INTERNATIONAL COURT OF JUSTICE

CASE CONCERNING AERIAL HERBICIDE SPRAYING (ECUADOR v. COLOMBIA)

REJOINDER OF THE REPUBLIC OF COLOMBIA

VOLUME V

ANNEXES 56 - 59

1 FEBRUARY 2012

LIST OF ANNEXES

VOLUME V

Annex 56	United States Environmental Protection Agency (EPA), Memorandum of 13 May 2003, Technical Review of the six acute toxicity studies on the spray mixture for Eradication of Illicit Crops in Colombia
Annex	56-A: Six Acute Toxicity Studies with Spray-Charlie, SLI Study N° 3596.16, 20 Feb. 2003
Annex	56-B: <i>Six Acute Toxicity Studies with Spray-Alpha</i> , SLI Study N° 3596.3, 3 Sep. 2002
Annex	56-C: Six Acute Toxicity Studies with Spray-Bravo, SLI Study N° 3596.10, 4 Sep. 2002
Annex 57	Letter by Ms Rebecca L. Puskas to the United States Environmental Protection Agency, 11 Nov. 2008
Annex 58	Embassy of the United States of America, List of Aerial Eradication Verification Missions since 1997
	Appendix: Implementation of the verification protocol January – July 1998, carried out October 18-23, 1998
Annex 59	United States Department of State, Bureau for International Narcotics Matters, Herbicide Selection for Coca Eradication, May 1984

Annex 56

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (EPA), MEMORANDUM OF 13 MAY 2003, TECHNICAL REVIEW OF THE SIX ACUTE TOXICITY STUDIES ON THE SPRAY MIXTURE FOR ERADICATION OF ILLICIT CROPS IN COLOMBIA

(United States Embassy in Bogotá, 2011)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

PESTICIDES

SUBSTANCES

OFFICE OF PREVENTION,

AND TOXIC

May 13, 2003

MEMORANDUM

DP Barcode: D289806 Case No: 296097 Submission: S634325 PC Codes: 103601 Glyphosate, isopropylamine salt

- From: Byron T. Backus, Ph.D., Toxicologist Technical Review Branch Registration Division (7505C)
- To: Jim Tompkins PM 25 Herbicide Branch Registration Division (7505C)

<u>ACTION REQUESTED</u>: "Please review the acute six pack by the Department of State for the spray mixture being used by the Department of State for illicit drug crop control in Columbia."

BACKGROUND: This package contains the following 6 acute toxicity studies conducted on test material identified as Spray–Charlie: acute oral LD_{50} (rat; MRID 45929403), acute dermal LD_{50} (rat; MRID 45929402), acute inhalation LC_{50} (rat; MRID 45929404) primary eye irritation (rabbit; MRID 45929405); primary skin irritation (rabbit; MRID 45929406), and dermal sensitization (guinea pig; MRID 45929407). There is also a study titled "Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)" in MRID 45929401. All studies were conducted at Springborn Laboratories, Inc. (SLI), Spencerville, OH.

The material received also includes a label for GLY-41 Herbicide (EPA Reg. No. 524-475) with a label declaration of 41.0% Glyphosate (as the isopropylamine salt) as sole

active ingredient, as well as a label (in Spanish) for COSMO-FLUX[®] 411F. Spray– Charlie (the end-use spray formulation) is prepared by mixing 44% (by volume) GLY-41 with 55% (by volume) water and 1% (by volume) of the surfactant Cosmo-Flux-411F.

COMMENTS AND RECOMMENDATIONS:

- 1. All 6 acute toxicity studies have been reviewed and classified as acceptable. The Data Evaluation Records (DERs) for each of these 6 studies are included in this memorandum.
- 2. The following is the acute toxicity profile for SPRAY–CHARLIE, based on the results of the acute toxicity studies:

Study Type	<u>Tox. Cat.</u>	Classification & MRID #
Oral LD ₅₀ (rat)	Tox. Cat. IV	Acceptable (MRID 45929403)
Dermal LD ₅₀ (rat)	Tox. Cat. IV	Acceptable (MRID 45929402)
Inhalation $LC_{50}(rat)$	Tox. Cat. IV	Acceptable (MRID 45929404)
Eye Irritation (rabbit)	Tox. Cat. III	Acceptable (MRID 45929405)
Dermal Irritation (rabbit)	Tox. Cat. IV	Acceptable (MRID 45929406)
Dermal Sensitization (guinea pig) Non-Sensitizer	Acceptable (MRID 45929407)

3. Based on the acute toxicity profile above, the following would be the appropriate precautionary labeling for this product, as obtained from the Label Review System:

PRODUCT NAME: SPRAY - CHARLIE

PRECAUTIONARY STATEMENTS

SIGNAL WORD: CAUTION

Hazards to Humans and Domestic Animals:

Causes moderate eye irritation. Avoid contact with eyes or clothing. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, or using tobacco. Wear: Long-sleeved shirt and long pants, Socks, and Shoes.

First Aid:

If in eyes:

-Hold eye open and rinse slowly and gently with water for 15-20 minutes. -Remove contact lenses, if present, after the first 5 minutes, then continue rinsing.

-Call a poison control center or doctor for treatment advice.

Have the product container or label with you when calling a poison control center or doctor or going for treatment. You may also contact 1-800-xxx-xxxx for emergency medical treatment information.

4. The above labeling is consistent with that for GLY-41 Herbicide (EPA Reg. No. 524-475).

DATA REVIEW FOR ACUTE ORAL TOXICITY TESTING (870.1100, formerly §81-1)

Product Manager: 25 MRID No.: 45929403

Reviewer: Byron T. Backus, Ph.D.

CITATION: Bonnette, K.L. An Acute Oral Toxicity Study in Rats with Spray–Charlie. SLI Study No. 3596.16. Unpublished study prepared by Springborn Laboratories, Inc. (SLI), Spencerville, OH 45887. Study Completion Date: Feb. 20, 2003. MRID 45929403.

STUDY SPONSOR AND SUBMITTER: INL/A U.S. Dept. of State, Washington D.C. 20520

TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%.

SPECIES: Rat, Hsd: Sprague Dawley[®] SD[®] **AGE(at dosing):** "Young adult," males: approx. 9-10 weeks; females: approx. 8 weeks **WEIGHT (fasted):** Males: 294-325 g; Females: 169-188 g **SOURCE:** Harlan Sprague-Dawley, Inc., Indianapolis, IN

<u>EXECUTIVE SUMMARY</u>: In an acute oral toxicity study (MRID 45929403), 5 male & 5 female fasted (overnight; fasted body wts: males: 294-325 g; females: 169-188 g) young adult (males: ~9-10 wks; females: ~8 wks) Hsd: Sprague-Dawley[®]SD[®] rats (source: Harlan Sprague-Dawley, Indianapolis), were orally dosed with Spray-Charlie, containing at least 15.2% a.e. [acid equivalent] glyphosate. The test material (a liquid with a density of 1.08 g/mL) was administered undiluted at 5000 mg/kg.

There was no mortality. Symptoms included soft stools (5M & 2F) and fecal stain (4M) on days 0-1. In addition, there was rough coat (3M), dark material around eyes and/or nose (4M) and congested breathing with rales (1F). Most symptoms were gone by day 6, although one male had transient dark material around the eyes on day 9 only. All rats had weight gains from day 0 to 7, and again from day 7 to 14.

There were no dose-related abnormalities observed at post-sacrifice necropsy.

Oral LD50 Males > 5000 mg/kg (0/5 died at this dose level) Oral LD50 Females > 5000 mg/kg (0/5 died at this dose level)

Spray–Charlie, a liquid (density of 1.08 g/mL), with at least 15.2% a.e. glyphosate, is in toxicity category IV in terms of its oral LD50.

Study Classification: Acceptable

COMPLIANCE: Signed and dated GLP Compliance (p. 3), Quality Assurance (p. 4), and [No] Data Confidentiality (p. 2) statements are provided. There is no flagging statement.

Procedure (including deviations from 870.1100): The test article was an amber liquid, which was a pooled sample from five different mixes of Spray–Charlie.

Results:

Dose	, Dose	Number	of Deaths/Numbe	r Tested
(mg/kg)	(mL/kg)	Males	Females	Total
5000	4.63	0/5	0/5	0/10

Observations: Symptoms included soft stools (5M & 2F) and fecal stain (4M) on days 0-1. In addition, there was rough coat (3M), dark material around eyes and/or nose (4M) and congested breathing with rales (1F). Most symptoms were gone by day 6, although one male had transient dark material around the eyes on day 9 only. All rats had weight gains from day 0 to 7, and again from day 7 to 14.

Gross Necropsy: There were no dose-related abnormalities observed at post-sacrifice necropsy.

DATA REVIEW FOR ACUTE DERMAL TOXICITY TESTING (870.1200, formerly §81-2)

Product Manager: 25 MRID No.: 45929402 Reviewer: Byron T. Backus, Ph.D.

CITATION: Bonnette, K.L. An Acute Dermal Toxicity Study in Rats with Spray–Charlie. SLI Study No. 3596.17. Unpublished study prepared by Springborn Laboratories, Inc. (SLI), Spencerville, OH 45887. Study Completion Date: Feb. 20, 2003. MRID 45929402.

STUDY SPONSOR AND SUBMITTER: INL/A U.S. Dept. of State, Washington D.C. 20520

TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%.

SPECIES: Rat, Hsd: Sprague Dawley[®] SD[®] **AGE(at exposure):** "Young adult," approx. 9 weeks old **WEIGHT:** Males: 265-290 g; Females: 189-207 g **SOURCE:** Harlan Sprague-Dawley, Inc., Indianapolis, IN

EXECUTIVE SUMMARY: In an acute dermal toxicity study (MRID 45929402), 5M & 5F young adult (~9-week old; males: 265-290 g; females: 189-207 g) Sprague Dawley[®] SD[®] rats (source: Harlan Sprague-Dawley, Indianapolis, IN) were dermally exposed for 24 hrs (occluded exposure) to 5000 mg/kg of Spray–Charlie, containing at least 15.2% a.e. [acid equivalent] glyphosate. The test material (a liquid with a density of 1.08 g/mL) was administered undiluted.

There was no mortality. Systemic symptoms included dark material around the eyes, nose and/or mouth (10/10 rats), few feces (2F) and soft stools (1M). These symptoms were gone by day 3. One male lost 1 g between day 7 and 14, and two females with weight gains in the period from day 0 to day 7 had moderate weight losses (31 g or 13.7% for #A6710 and 26 g or 12.5% for #A6715) between day 7 and 14. However, based on results from other acute dermal studies with glyphosate, as well as the findings from the oral toxicity study (MRID 45929403) on Spray–Charlie, it is concluded that these weight losses were not a result of exposure to the test material. There was dermal irritation (grade "1" erythema and/or edema) in some rats on day 1, still present in one on day 2, gone by day 3.

There were no significant gross findings at post-sacrifice necropsy.

Dermal LD50 Males > 5000 mg/kg (0/5 died at this dose level) Dermal LD50 Females > 5000 mg/kg (0/5 died at this dose level)

Spray–Charlie, a liquid with a density of 1.08 g/mL, with at least 15.2% glyphosate a.e., is in toxicity category IV in terms of dermal toxicity, based on the LD50 (both sexes) > 5000 mg/kg.

Study Classification: Acceptable

COMPLIANCE: Signed and dated GLP Compliance (p. 3), Quality Assurance (p. 4), and [No] Data Confidentiality (p. 2) statements are provided. There is no flagging statement.

Procedure (including deviations from 870.1200): "On day -1, the fur was removed from the dorsal trunk area of the animals chosen for the limit test... The clipped area was approximately 10% of the animal's body surface area (BSA). The region included the scapula (shoulder) to the wing of the ilium (hipbone) and half way down the flank on each side of the animal... On the following day (day 0), the test article was administered dermally to approximately 10% of the body surface area (or as large an area as possible). The four corners of this area were delineated in the clipped area with an indelible marker. The test article was then spread evenly over the delineated test area and held in contact with the skin with an appropriately sized 4-ply porous gauze dressing backed with a plastic wrap which was placed over the gauze dressing (occlusive binding). Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area. The elastic wrap was further secured with a tape harness on the cranial end of the trunk and then secured with adhesive tape around the trunk at the caudal end... Individual doses were calculated based on the animal's day 0 body weight. After an approximate 24-hour exposure period, the binding materials were removed... Residual test article was removed using gauze moistened with deionized water followed by dry gauze."

Results:

	Number of Deaths/Number Tested			
Dosage (mg/kg)	Males	Females	Combined	
5000	0/5	0/5	0/10	

Observations: Systemic symptoms included dark material around the eyes, nose and/or mouth (10/10 rats), few feces (2F) and soft stools (1M). These symptoms were gone by day 3. One male lost 1 g between day 7 and 14, and two females with weight gains in the period from day 0 to day 7 had moderate weight losses (31 g or 13.7% for #A6710 and 26 g or 12.5% for #A6715) between day 7 and 14. However, based on results from other acute dermal studies with glyphosate, as well as the findings from the oral toxicity study (MRID 45929403) on Spray–Charlie, it is concluded that these weight losses were not a result of exposure to the test material. There was dermal irritation (grade "1" erythema and/or edema) in some rats on day 1, still present in one on day 2, gone by day 3.

Gross Necropsy: There were no significant gross findings at post-sacrifice necropsy.

DATA REVIEW FOR ACUTE INHALATION TOXICITY TESTING (870.1300, formerly §81-3)

Product Manager: 25 MRID No.: 45929404 Reviewer: Byron T. Backus, Ph.D.

CITATION: Bonnette, K.L. An Acute Nose-Only Inhalation Toxicity Study in Rats with Spray–Charlie. SLI Study No. 3596.18. Unpublished study prepared by Springborn Laboratories, Inc. (SLI), Spencerville, OH 45887. Study Completion Date: March 14, 2003. MRID 45929404.

STUDY SPONSOR AND SUBMITTER: INL/A U.S. Dept. of State, Washington D.C. 20520

TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%.

SPECIES: Rat, Hsd: Sprague Dawley[®] SD[®] **AGE(at exposure):** "Young adult," approx. 9 weeks old **WEIGHT(at exposure):** Males: 248-275 g; Females: 201-212 g **SOURCE:** Harlan Sprague-Dawley, Inc., Indianapolis, IN

<u>EXECUTIVE SUMMARY</u>: In an acute inhalation toxicity study (MRID 45929404), a group of 5 male and 5 female young adult (~9 week old; males 248-275 g; females: 201-212 g) Hsd: Sprague Dawley[®] SD[®] rats (source: Harlan Sprague-Dawley, Indianapolis, IN) received 4-hr nose-only exposure to an aerosol with a mean time-weighted analytical concentration of 2.60 mg/L of Spray–Charlie, a liquid containing at least 15.2% a.e. [acid equivalent] glyphosate. A mean of 66% of the particles by weight had an effective cutoff diameter of $\leq 4 \mu m$. The MMAD was 2.9 μm , and the GSD was 2.17.

There was no mortality (0/5M & 0/5F died). No symptoms were observed during exposure. Symptoms after exposure included congested breathing and rales in all rats, with congested breathing persisting in 3M through day 14. Other symptoms included labored breathing (in some cases with gasping), no or few feces, dark material around mouth, and decreased food consumption. Two males and one female lost weight in the period from day 0 to day 7; but (except for one female which maintained weight) all gained weight in the period from day 0 to day 14, although overall body weight gains in two males (as well as this one female) appeared to be reduced.

At post-sacrifice necropsy there were no gross abnormalities.

Inhalation LC50 Males > 2.60 mg/L (0/5 died after 4-hr exposure to this concentration) Inhalation LC50 Females > 2.60 mg/L (0/5 died after 4-hr exposure to this concentration)

The test material, Spray–Charlie, a liquid containing at least 15.2% a.e. glyphosate, is in toxicity category IV by the inhalation exposure route.

Study Classification: Acceptable

COMPLIANCE: Signed and dated GLP Compliance (p. 3), Quality Assurance (p. 4), and [No] Data Confidentiality (p. 2) statements are provided. There is no flagging statement.

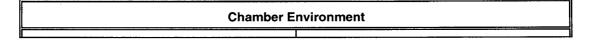
Procedure (including deviations from 870.1300): "Prior to experimental initiation, preliminary aerosol generation trials were conducted. These trials were performed in order to determine the most efficient means of generating an aerosol of the appropriate concentration while utilizing equipment that would reduce the aerodynamic particle size... On day 0, the animals chosen for the limit test were weighed, placed in a nose-only exposure tube and allowed to acclimate to the exposure tube for at least 1 hour. Animals that appeared to have been acclimated to the exposure tube (i.e., minimal struggling and no inversion) were considered to be acceptable, removed from the exposure tube and returned to their cages until initiation of the aerosol exposure. Animals that did not...acclimate to the exposure tube were not acceptable...

"The acceptable animals were then placed in exposure tubes, the tubes inserted into the Multi-State 10L nose-only inhalation chamber and the test article aerosolized... The aerosol exposure consisted of a 3-minute T99 equilibration period, a 240-minute exposure period and a 3-minute deequilibration period equal to the T99 equilibration period. After each aerosol exposure, animals were removed from the exposure tubes and residual test article was removed from the animal's exterior surfaces (where practical) by wiping the haircoat with a towel...

"The test aerosol was generated with a Pistol Spraying System and a Master Flex Pump... Conditioned high pressure external air was used in generating the test atmosphere..."

Results:

Mean Exposure Concentration	Number o	f Deaths/Numbe	r Tested
mg/L (Analytically Determined)	Males	Females	Combined
2.60	0/5	0/5	0/10


The nominal concentration was 70.30 mg/L.

Clinical Observations: No symptoms were observed during exposure. Symptoms following exposure included congested breathing and rales in all rats, with congested breathing persisting in 3M through day 14. Other symptoms included labored breathing (in some cases with gasping), no or few feces, dark material around mouth, and decreased food consumption. Two males and one female lost weight in the period from day 0 to day 7; but (except for one female which only maintained weight) all gained weight in the period from day 0 to day 14, although overall body weight gains in two males (as well as this one female) appeared to be reduced.

Gross Necropsy: At post-sacrifice necropsy there were no gross abnormalities.

Chamber Atmosphere			
Analytical Conc. (mg/L)	MMAD (μm)	GSD	
2.60	2.9	2.17	

Particle Size Distribution: A 7-stage Cascade Impactor was used to determine particle size distribution. A mean of 66% of the particles by mass were \leq 4.0 μ m.

•

Internal Chamber Volume	10 L	
Mean Air Flow Rate	24 LPM	
Mean Chamber Temperature (range)	68.3-70.7° F	
Mean Relative Humidity (range)	68.3-69.3%	

DATA REVIEW FOR PRIMARY EYE IRRITATION TESTING (870.2400, formerly §81-4)

Product Manager: 25 MRID No.: 45929405 Reviewer: Byron T. Backus, Ph.D.

CITATION: Bonnette, K.L. A Primary Eye Irritation Study in Rabbits with Spray–Charlie. SLI Study No. 3596.19. Unpublished study prepared by Springborn Laboratories, Inc. (SLI), Spencerville, OH 45887. Study Completion Date: February 17, 2003. MRID 45929405.

STUDY SPONSOR AND SUBMITTER: INL/A U.S. Dept. of State, Washington D.C. 20520

TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%. pH not reported.

SPECIES: Rabbit, albino, New Zealand White (males only) AGE: "adult" (approximately 16 weeks) WEIGHT: 3.172 - 3.607 kg SOURCE: Myrtle's Rabbitry, Thompson Station, TN

EXECUTIVE SUMMARY: In a primary eye irritation study (MRID 45929405), 0.1 mL Spray– Charlie, a liquid (pH not reported) containing at least 15.2% a.e. [acid equivalent] glyphosate, was instilled into the conjunctival sac of one eye of each of three adult (16 week old) male (3.172-3.607 kg) New Zealand white rabbits (source: Myrtle's Rabbitry, Thompson Station, TN).

No corneal opacity was observed. All 3 eyes were positive for iritis at 1 hr, but all were negative (scored zero) for iritis at 24 hrs and subsequently. All eyes were positive for conjunctival redness (score "2") and chemosis (score "2") at 24 hours, and all 3 eyes were positive for redness at 48 hrs. One eye was still positive for redness at 72 hrs. All eyes had cleared (all scores zero) by day 7.

As eye irritation was still present through 72 hours, but had cleared by day 7, the test material, Spray–Charlie, a liquid containing at least 15.2% a.e. glyphosate, is in toxicity category III for eye irritation potential.

Study Classification: Acceptable

COMPLIANCE: Signed and dated GLP Compliance (p. 3), Quality Assurance (p. 4), and [No] Data Confidentiality (p. 2) statements are provided. There is no flagging statement.

Procedure (including deviations from 870.2400): "A minimum of one hour after preliminary ocular examination, the test article was instilled...into the conjunctival sac of the right eye of each animal after gently pulling the lower lid away from the eye. Following instillation, the eyelids were gently held together for approximately one second in order to limit test article loss..."

Results:

	Number scoring positive/total number				
Observations	1 hr	24 hrs ^b	48 hrs	72 hrs	7 days
Corneal Opacity	0/3	0/3 ^b	0/3	0/3	0/3
Iritis	3/3	0/3	0/3	0/3	0/3
Conjunctivae:					
Redness ^a	2/3	3/3	3/3	1/3	0/3
Chemosis ^a	3/3	3/3	1/3	0/3	0/1
Discharge ^a	1/3	1/3	0/3	0/3	0/1

^aScore of 2 or more considered positive.

^bFluorescein examination at 24 hours; all eyes were negative.

No corneal opacity was observed. All 3 eyes were positive for iritis at 1 hr, but all were negative (scored zero) for iritis at 24 hrs and subsequently. All eyes were positive for conjunctival redness (score "2") and chemosis (score "2") at 24 hours, and all 3 eyes were positive for redness at 48 hrs. One eye was still positive for redness at 72 hrs. All eyes had cleared (all scores zero) by day 7.

DATA REVIEW FOR PRIMARY DERMAL IRRITATION TESTING (870.2500, formerly §81-5)

Product Manager: 21 MRID No.: 45929406 Reviewer: Byron T. Backus, Ph.D.

CITATION: Bonnette, K.L. A Primary Skin Irritation Study in Rabbits with Spray–Charlie. SLI Study No. 3596.20. Unpublished study prepared by Springborn Laboratories, Inc. (SLI), Spencerville, OH 45887. Study Completion Date: February 17, 2003. MRID 45929406.

STUDY SPONSOR AND SUBMITTER: INL/A U.S. Dept. of State, Washington D.C. 20520

TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%. pH not reported.

SPECIES: Rabbit, albino, New Zealand White (1 male, 2 females)
AGE: "adult" (approximately 13 weeks)
WEIGHT: Male: 2.723 kg; Females: 2.494-2.814 kg [according to Table 1 p. 15 all 3 rabbits were female]
SOURCE: Myrtle's Rabbitry, Thompson Station, TN

EXECUTIVE SUMMARY: In a dermal irritation study (MRID 45929406), 0.5 mL undiluted Spray– Charlie, a liquid (pH not reported) containing at least 15.2% a.e. [acid equivalent] glyphosate was applied to a dermal site on each of 3 adult (13 weeks; male: 2.723 kg; females: 2.494 & 2.814 kg) New Zealand white rabbits, with 4-hr semioccluded exposure.

All scores (1, 24, 48 & 72 hrs) for edema were zero. At 1 hour all 3 sites scored "1" for erythema; at 24 hrs and subsequently all scores for erythema were zero. The primary irritation index (mean of scores at 1, 24, 48 & 72 hrs) = 0.25. The primary irritation index (mean of scores at 1, 24, 48 & 72 hrs) = 0.25. At 1 hr 3/3 sites scored "1" for erythema; this was the only irritation seen in this study as all scores at 24 hrs and subsequently were zero.

The test material, Spray–Charlie, containing at least 15.2% a.e. glyphosate, is in toxicity category IV in terms of dermal irritation.

Study Classification: Acceptable

COMPLIANCE: Signed and dated GLP Compliance (p. 3), Quality Assurance (p. 4), and [No] Data Confidentiality (p. 2) statements are provided. There is no flagging statement.

Procedure (including deviations from 870.2500): "On day -1, the animals chosen for use...had the fur removed from the dorsal area of the trunk... On the following day (day 0), [0.5 mL of] the test article was applied to a small area of intact skin on each test animal (approximately 1 inch x 1 inch)... The test article was administered under the [1" x 1" square 4-ply] gauze patch. The gauze patch was held in contact with the skin...with a nonirritating tape. Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area (semi-occlusive binding). The elastic wrap was the further secured with adhesive tape around the trunk at the cranial and caudal ends. After dosing, collars were placed on each animal and remained in place until removal on day 3. After a four-hour exposure period, the binding materials were removed from each animal... Residual test article was removed using gauze moistened with deionized water, followed by dry gauze."

Results: All scores (1, 24, 48 & 72 hrs) for edema were zero. At 1 hour all 3 sites scored "1" for erythema; at 24 hrs and subsequently all scores for erythema were zero. The primary irritation index (mean of scores at 1, 24, 48 & 72 hrs) = 0.25.

DATA REVIEW FOR DERMAL SENSITIZATION TESTING (870.2600, formerly §81-6)

Product Manager: 25 MRID No.: 45929407 Reviewer: Byron T. Backus, Ph.D.

CITATION: Bonnette, K.L. A Dermal Sensitization Study in Guinea Pigs with Spray–Charlie. SLI Study No. 3596.21. Unpublished study prepared by Springborn Laboratories, Inc. (SLI), Spencerville, OH 45887. Study Completion Date: March 14, 2003. MRID 45929407.

STUDY SPONSOR AND SUBMITTER: INL/A U.S. Dept. of State, Washington D.C. 20520

TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%.

SPECIES: Guinea Pig, albino, Hartley-derived AGE(at initiation of induction): Young adult (males: ~6-7 weeks; females: ~8-9 weeks) WEIGHT(Day -1): Males: 394 - 464 g; Females: 366 - 420 g SOURCE: Hilltop Lab Animals Inc., Scottdale, PA

EXECUTIVE SUMMARY: In a dermal sensitization study (MRID 45929407) using a Modified Buehler Design, 20 (10 male: 7 weeks; 394-464 g [day -1] & 10F: ~9 weeks; 366-420 g [day -1]) albino Hartley-derived guinea pigs received 3 6-hr occluded induction exposures, each to 0.3 mL of undiluted Spray–Charlie, a liquid containing at least 15.2% a.e. glyphosate, on study days 0, 7 & 14. Two weeks later the test (previously exposed) guinea pigs as well as a naive control group of 5M & 5F were similarly exposed at a previously unexposed test site. The concentration of test material in the induction and challenge exposures was based on results from a preliminary topical range-finding assay.

Following challenge 0/20 previously exposed and 0/10 naive control guinea pigs scored zero at 24 hours; 2/20 previously exposed and 0/10 naive control guinea pigs scored \pm (maximum response observed) at 48 hrs. These results indicate the test material is not a potential dermal sensitizer.

The report includes a positive control study utilizing alpha-Hexylcinnamaldehyde (HCA); this study was conducted from September 17, 2002 to October 17, 2002. Results were appropriate. The in-life study with Spray–Charlie began on December 31, 2002 and ended on January 30, 2003.

Study Classification: Acceptable. The results of this study indicate Spray–Charlie, a liquid containing at least 15.2 a.e. glyphosate, is not a potential dermal sensitizer.

COMPLIANCE: Signed and dated GLP Compliance (p. 3), Quality Assurance (p. 4), and [No] Data Confidentiality (p. 2) statements are provided. There is no flagging statement.

Procedure: The dosages used for induction and challenge were based on preliminary irritation studies. For induction: "On the day prior to each dose administration, the guinea pigs had the hair removed... A dose of 0.3 mL of the test article was placed on a 25 mm Hilltop chamber backed by adhesive tape (occlusive patch). The chambers were then applied to the clipped surface as quickly

as possible... The induction procedure was repeated on study day 7 and on study day 14 so that a total of three consecutive induction exposures were made to the test animals."

For challenge: "On the day prior to challenge dose administration, the test and challenge control animals were weighed and the hair was removed from the right side of the animals. On the day following...(day 28), chambers were applied... Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened in deionized water

Results: Following challenge 0/20 previously exposed and 0/10 naive control guinea pigs scored zero at 24 hours; 2/20 previously exposed and 0/10 naive control guinea pigs scored \pm (maximum response observed) at 48 hrs. These results indicate the test material is not a potential dermal sensitizer.

The report includes a positive control study utilizing alpha-Hexylcinnamaldehyde (HCA); this study was conducted from September 17, 2002 to October 17, 2002. Results were appropriate. The in-life study with Spray–Charlie began on December 31, 2002 and ended on January 30, 2003.

ACUTE TOX ONE-LINERS

- 1. DP BARCODE: D289806
- 2. PC CODES: 103601 Glyphosate, isopropylamine salt
- 3. CURRENT DATE: May 12, 2003

4. TEST MATERIAL: Sample pooled at SLI from five different mixes of Spray–Charlie. From SLI Study No. 3596.15 [Purity Analysis for Glyphosate of Spray–Charlie (Active Ingredient)] in MRID 45929401 the five separate mixes were prepared by adding together 0.439-0.44 by volume GLY-41 Herbicide; 0.01 by volume Cosmo Flux-411F; and 0.55-0.551 by volume Lake Water. The before use (pre-test?) mean for Glyphosate a.e. [acid equivalent] was 16.53% (S.D. 1.35%); and the after use mean percentage was 15.20% (S.D. 1.54%). Both values are above the expected 14.8%.

Study/Species/Lab Study #/Date	MRID	Results	Tox. Cat.	Core Grade
Acute oral toxicity/rat/ Springborn Labs Inc. (SLI)/SLI Study No. 3596.16/FEB-20-2003	45929403	$LD_{50}(M, F, combined) > 5000 mg/kg (0/5M & 0/5F died after dosage at this level). Only dose was 5000 mg/kg. Symptoms included soft stools and fecal stain on days 0-1. Also, there was rough coat, dark material around eyes and/or nose and congested breathing with rales (1F only). Most symptoms were gone by day 6, although one male had transient dark material around eyes on day 9 only. All gained weight from day 0-7 and from day 7-14. No dose-related abnormalities observed at post-sacrifice necropsy.$		A
Acute dermal toxicity/rat/ Springborn Labs Inc. (SLI)/SLI Study No. 3596.17/FEB-20-2003	45929402	$LD_{50}(M, F, combined) > 5000 mg/kg (0/5M & 0/5F died at this dose level). Symptoms: dark material around facial area, few feces and soft stools. One male lost 1 g day 7-14 and 2F which had gained weight days 0-7 had moderate wt losses (31 g or 13.7% for one and 26 g or 12.5% for the other) day 7-14. No significant findings at post-sacrifice necropsy.$	IV	A
Acute inhalation toxicity/ rat/Springborn Labs Inc. (SLI)/SLI Study No. 3596.18/MAR-14-2003	45929404	Nose-only exposure. $LC_{50}(M,F, \text{ combined}) > 2.6 \text{ mg/L} (0/5M \& 0/5F died). No symptoms observed during exposure. Symptoms after included congested breathing and rales in all rats, with congested breathing persisting in 3M through day 14. Other symptoms: labored breathing (in some cases with gasping), no or few feces, dark material around mouth and decreased food consumption. 2M & 1F lost wt from day 0 to 7; but, except for 1F which maintained wt, all gained wt day 0 -14, though overall wt gains in 2M (as well as the 1F) were reduced. No abnormalities were observed at post-sacrifice necropsy. 66% of the particles by mass had an effective cut-off diameter of \leq 4 µm. MMAD was 2.9 µm & GSD was 2.17.$	IV	A
Primary eye irritation/ rabbit/Springborn Labs Inc. (SLI)/SLI Study No.	45929405	3 NZ white rabbit eyes exposed. 0.1 mL test material instilled. No corneal opacity observed. 3/3 eyes were positive for iridial irritation at 1 hr	111	A

3596.19/FEB-17-2003		but were subsequently clear. All 3 eyes were positive for conjunctival redness & chemosis at 24 hrs, and all 3 were positive for redness at 48 hrs. 1/3 eyes was still positive for redness at 72 hrs. All eyes had cleared (all scores zero) by day 7.		
Primary dermal irritation/ rabbit/Springborn Labs Inc. (SLI)/SLI Study No. 3596.20/FEB-17-2003	45929406	3 NZ white rabbits used. PII (av. of 1, 24, 48 & 72 hr scores) = 0.25; at 1 hr 3/3 sites scored "1" for erythema (max score for erythema) and "0" for edema. At 24 hrs & subsequently all scores were zero.	IV	A
Dermal sensitization/ guinea pig/Springborn Labs Inc. (SLI)/SLI Study No. 3596.21/MAY-30-2002	45929407	Modified Buehler test. 20 (10M & 10F) Hartley- derived albino guinea pigs received 1/week for 3 weeks induction exposures to 0.3 mL undiluted test material, with challenge 2 weeks after last induction treatment. At challenge 0/20 induced and 0/10 naive controls scored zero at 24 hrs; 2/20 induced scored ± at 48 hrs with all other scores zero. Results indicate a nonsensitizer. Positive control study used HCA, was within 6 months & was acceptable.	Non- Sensi- tizer	A

Core Grade Key: A =Acceptable, S = Supplementary, U = Unacceptable, V = Self Validated

Annex 56-A

Six Acute Toxicity Studies with Spray-Charlie, SLI Study N° 3596.16, 20 February 2003

(United States Embassy in Bogotá, 2011)

AN ACUTE ORAL TOXICITY STUDY IN RATS WITH SPRAY--CHARLIE

FINAL REPORT

OPPTS Guideline

870.1100

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

February 20, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Company, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.16

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 22

SLI Study No. 3596.16 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent:	Date	

Title

Signature

(3)

FEB 1 4 2003

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

ger Rogers Woolfolk

Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 6 Jeb 03

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	10/07/02
Necropsy	12/30/02
Data Audit	01/21/03
Draft Report Review	01/21/03
Final Report Review	02/20/03

Reports to Study Director and Management 01/21/03, 02/20/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Melle

Jennifer D/McGue Quality Assurance Auditor

queta In Basan

Ánita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 2/20/03

Date <u>2/20/03</u>

(4)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT	4
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	6
6. SUMMARY	7
7. INTRODUCTION	8
8. MATERIALS AND METHODS	8
9. EXPERIMENTAL PROCEDURES	10
10. DATA ACQUISITION AND ELECTRONIC RECORDS	11
11. ANALYSIS OF DATA	12
12. MAINTENANCE OF RAW DATA AND RECORDS	12
13. RESULTS	12
14. CONCLUSION	13
15. REPORT REVIEW	13
16. REFERENCE	14

(5)

SLI Study No. 3596.16 (6)

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

2.	Individual Clinical Observations Individual Body Weights Individual Gross Necropsy Observations	17
<u>Ap</u>	pendix	

Α.	SLI Personnel Responsibilities	21
----	--------------------------------	----

(7)

6. SUMMARY

The single-dose oral toxicity of Spray--Charlie was evaluated in Sprague Dawley rats. A limit test was performed in which one group of five male and five female rats received a single oral administration of the test article at a dose of 5000 mg/kg body weight. Following dosing, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all limit test animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the limit test. Clinical abnormalities observed during the study included transient incidences of soft stools, fecal staining, rough coat, congested breathing, rales and dark material around the facial area. Body weight gain was noted for all animals during the test period. No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute oral LD50 of Spray--Charlie was estimated to be greater than 5000 mg/kg in the rat.

(8)

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Charlie in Sprague Dawley rats when administered by gavage as a single oral dose. This study was intended to provide information on the potential health hazards of the test article with respect to oral exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1100, Acute Oral Toxicity, August 1998. This study was performed at Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc. 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on December 16, 2002 (day 0) and concluded with necropsy on December 30, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
SprayCharlie ^a	S02.003.3596	Amber liquid	12/09/02	None provided
Ingredients: ^b Herbicide: GLY-41 Lot No.: Manufactured 10/20/02				None provided
Surfactant: Cosmo Flux-411F Lot No.: Manufactured 11/29/02				None provided

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

SLI Study No. 3596.16 (9)

8.2. Retention Sample

A 1 mL retention sample of each of the 5 test article mixtures (top/middle/bottom, maintained separately for a total of 15, 1 mL samples) was collected and maintained at SLI at room temperature. Also, a 10 mL retention sample of the pooled test article sample (from the 5 test article mixtures) was collected and maintained at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test articles were pooled and dispensed as received fresh on the day of dosing. The density of the test article was 1.08 g/mL. The test article preparation was stirred continuously during the dosing procedure.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-74°F (22-23°C) and 33-53%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study (except during fasting). The lot number and expiration date of each batch of diet used during the study were recorded. The

SLI Study No. 3596.16 (10)

feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 9-10 weeks of age and weighed 325-356 g prior to fasting. The female animals were approximately 8 weeks of age and weighed 190-208 g prior to fasting.

9. EXPERIMENTAL PROCEDURES

9.1. Dosing

On day -1, the animals chosen for the limit test were weighed and fasted overnight. On day 0, the test article was administered orally as a single dose using a ball tipped stainless steel gavage needle attached to a syringe at the following level:

(11)

Dose Level	Concentration	Dose Volume	No. of	Animals
(mg/kg)	(%)	(mL/kg)	Male	Female
5000	100 ^a	4.63 ⁶	5	5

^aPooled test article.

^bAdusted based on a density of 1.08 g/mL.

Individual doses were calculated based on the animal's fasted (day 0) body weight. Animals were returned to ad libitum feeding after dosing.

9.2. Clinical Observations

The animals were observed for clinical abnormalities a minimum of two times on study day 0 (post-dose) and daily thereafter (days 1-14). A general health/mortality check was performed twice daily (in the morning and in the afternoon).

9.3. Body Weights

Individual body weights were obtained for the animals prior to fasting (day -1), prior to dosing on day 0 and on days 7 and 14.

9.4. Gross Necropsy

All animals were euthanized by carbon dioxide inhalation at study termination (day 14) and were necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.5. Protocol Deviations

No protocol deviations occurred during this study.

10. DATA ACQUISITION AND ELECTRONIC RECORDS

Electronic data were recorded on a Compaq Alpha Server DS10 utilizing the Toxicology Analysis System Customized, Acute Toxicology Module, Version 1.0.0 or higher. The SLI study number assigned to this study is 3596.16. The computer study number used to collect data for the study phases was 359616. The tables within the report display the applicable computer number.

SLI Study No. 3596.16 (12)

11. ANALYSIS OF DATA

Data from the study were analyzed and an LD50 value estimated as follows:

< 50% Mortality: LD50 was estimated as greater than the administered dose.

= 50% Mortality: LD50 was estimated as equal to the administered dose.

> 50% Mortality: LD50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females.

12. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and electronic records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

13. RESULTS

13.1. Mortality

Individual Data: Table 1

No mortality occurred during the limit test.

13.2. Clinical Observations

Individual Data: Table 1

Clinical abnormalities observed during the study included transient incidences of soft stools, fecal staining, rough coat, congested breathing, rales and dark material around the facial area.

13.3. Body Weight DataIndividual Data: Table 2

Body weight gain was noted for all animals during the test period.

(13)

13.4. Gross Necropsy Individual Data: Table 3

No significant gross internal findings were observed at necropsy on study day 14.

Note: A hernia of the diaphragm was observed for 1/5 test males. However, this finding is congenital and common in this strain of rat and therefore, is not considered to be significant.

14. CONCLUSION

Under the conditions of this test, the acute oral LD50 of Spray--Charlie was estimated to be greater than 5000 mg/kg in the rat.

Kimberly L. Bonnette, M.S., LATG Study Director

Date 2 20 W

15. REPORT REVIEW

Dawn D. Rodabaugh, B.S Toxicologist

Date 2120/03

SLI Study No. 3596.16 (14)

16. REFERENCE

1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.

	TABLE 1	AN ACUTE ORAL TOXICITY STUDY IN RATS	NDI VI DUAL CLINI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)
STUDY NO.: 359616	INL/A, US DEPARTMENT OF STATE	AN ACI	IUN I
STUDY	I NL/A		

PAGE 1

37

(15)

PAGE 2										
	ATS	S		5 6 7 8 9 10 11 12 13 14	d	Ρ	Ω,	C,	Q,	B=BI LATERAL
TABLE 1	AN ACUTE ORAL TOXICITY STUDY IN RATS	I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	DAY OF STUDY	0 1 2 3 4 5 6			4 4 4	đ	đ	3=SEVERE P=PRESENT L=LEFT R=RIGHT
STUDY NO.: 359616 INL/A, US DEPARTMENT OF STATE		5000 MG/KG		0BSERVATI ONS	A6711 SCHEDULED EUTHANASIA	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A CONGESTED BREATHI NG RALES	SCHEDULED EUTHANASIA SOFT STOOLS	A6718 SCHEDULED EUTHANASIA SOFT STOOLS	GRADE CODE: 1=SLIGHT 2=MODERATE 3=SEVER
STUDY NO.: I NL/A, US		FEMALES 50		FEMALE#	A6711	A6712	A6713	A6714	A6718	GRADE CODE

(16)

Annex 56-A

STUDY NO.: 359616 INL/A, US DEPARTMENT OF STATE

TABLE 2

PAGE 1

----------AN ACUTE ORAL TOXICITY STUDY IN RATS I NDI VI DUAL BODY WEI GHTS (GRAMS) 14 AT DEATH (DAY) 364 364 378 374 405 378 378 $380 \\ 15.2 \\ 5$ $\begin{array}{c} 340 \\ 345 \\ 352 \\ 372 \\ 354 \\ 354 \end{array}$ $353 \\ 12.2 \\ 5$ 2 DAY OF STUDY -10 303 12.7 5 295 299 301 325 294 335 12.7 5 325 330 336 356 326 326 MALES 5000 MG/KG ANI MAL# A6561 A6561 A6626 A6640 A6638 A6638 A6646 MEAN S. D. N ł

STUDY NO.: 359616 INL/A, US DEPARTMENT OF STATE

TABLE 2

2	
PAGE	
PA	

IADLE &

AN ACUTE ORAL TOXICITY STUDY IN RATS	GHTS (GRAMS)	14 AT DEATH (DAY)	217 216 220 235 234 234 9.3 9.3
		7	207 195 213 216 219 219 219 9.5 9.5
		STUDY 0	172 169 1175 1178 1178 178 7.3 7.3
	MG/KG	DAY 0F - 1	194 190 197 208 201 6.9 6.9
	FEMALES 5000 MG/KG	ANI MAL#	A6711 A6712 A6713 A6713 A6713 A6718 A6718 MEAN S. D.

STUDY NO.: 359616	359616			PAGE 1
I NL/A, US	INL/A, US DEPARTMENT OF STATE	0F STATE	TABLE 3	
			AN ACUTE ORAL TOXICITY STUDY IN RATS	
MALES	5000 MG/KG		I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	
ANI MAL#	DAY OF DEATH	STUDY DAY	OBSERVATI ON	FATE
A6561	30- DEC- 02 14	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6626	30- DEC- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6640	30- DEC- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6638	30- DEC- 02	14	DI APHRAGM: HERNI A; PRESENT MUSCULOTENDI NOUS PORTI ON, 0.5 X 0.4 CM, PORTI ON OF MEDI AL LIVER LOBE MI SSHAPEN AND EXTENDS I NTO THORAGI C CAVITY	SCHEDULED EUTHANASI A
A6646	30-DEC-02 14	14	ALL TISSUES WITHIN NORMAL LIMITS SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA

(19)

PAGE 2			FATE	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASIA
TABLE 3	AN ACUTE ORAL TOXICITY STUDY IN RATS	I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS				
JF STATE			STUDY DAY	14	14	14	14	14
STUDY NO.: 359616 I NL/A, US DEPARTMENT OF STATE		5000 MG/KG	DAY OF DEATH	30- DEC- 02				
STUDY NO.: I NL/A, US		FEMALES 5	ANI MAL#	A6711	A6712	A6713	A6714	A6718

(20)

Annex 56-A

APPENDIX A

(21)

SLI Personnel Responsibilities

SLI Study No. 3596.16 (22)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Malcolm Blair, Ph.D.	Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	General Manager
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Study Supervisor, Acute Toxicology
Christina L. Zehender, B.S.	Primary Technician/Acute Technician I
Delores P. Knippen	Supervisor, Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor, Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Cheryl Bellamy	Senior Supervisor, Report Writing
Deanna M. Talerico, RQAP-GLP	Senior Supervisor, Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Archivist

AN ACUTE DERMAL TOXICITY STUDY IN RATS WITH SPRAY--CHARLIE

FINAL REPORT

OPPTS Guideline

870.1200

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

February 20, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Company, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.17

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 29

(2)

SLI Study No. 3596.17

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent: _____ Date _____

Title

Signature

(3)

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Roger's Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

03 20 Date _ 之

Date 3 FEB 2003

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	10/07/02
Dosing	12/19/02
Data Audit	01/23/03
Draft Report Review	01/23/03
Final Report Review	02/20/03
Departs to Study Director	01/22/02 02/

Reports to Study Director and Management

01/23/03, 02/20/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

M Lee

Jennifer D/McGue Quality Assurance Auditor

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 2/20/03

Date <u>2/20/03</u>

Annex 56-A

(5)

SLI Study No. 3596.17

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES
6. SUMMARY7
7. INTRODUCTION
8. MATERIALS AND METHODS
9. EXPERIMENTAL PROCEDURES 11
10. DATA ACQUISITION AND ELECTRONIC RECORDS 12
11. ANALYSIS OF DATA 12
12. MAINTENANCE OF RAW DATA AND RECORDS
13. RESULTS
14. CONCLUSION
15. REPORT REVIEW
16. REFERENCES

(6)

SLI Study No. 3596.17

5. LIST OF TABLES AND APPENDICES

Tables

1.	Individual Clinical Observations	.16
2.	Individual Body Weights	.19
	Individual Gross Necropsy Observations	

Appendices

Α.	Macroscopic Dermal Grading System	23
В.	SLI Personnel Responsibilities	28

6. SUMMARY

The single-dose dermal toxicity of Spray--Charlie was evaluated in Sprague Dawley rats. A limit test was performed in which one group of five male and five female rats received a single dermal administration of the test article at a dose of 5000 mg/kg body weight. Following dosing, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the limit test. Clinical abnormalities observed during the study included transient incidences of dark material around the facial area and decreased defecation. Dermal irritation was noted at the site of test article application. Body weight loss was noted in one male and two females during the study day 7 to 14 body weight interval. Body weight gain was noted for all other animals during the test period. No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute dermal LD50 of Spray--Charlie was estimated to be greater than 5000 mg/kg in the rat.

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Charlie in Sprague Dawley rats when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1200, Acute Dermal Toxicity, August 1998. This study was performed at Springborn Laboratories (SLI), 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on December 19, 2002 (day 0), and concluded with necropsy on January 2, 2003.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

	Assigned	Physical	Receipt	Expiration
Sponsor's ID	SLI ID	Description	Date	Date
Spray—Charlie ^a	S02.003.3596	Amber liquid	12/09/02	None provided
Ingredients: ^b Herbicide: GLY-41 Lot No.: Manufactured 10/20/02				None provided
Surfactant: Cosmo Flux-411F Lot No.: Manufactured 11/20/02				None provided

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc. analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test articles were pooled and administered as received from the Sponsor and dispensed fresh on the day of dosing. The test articles were stirred continuously during dosing. The density of the test article was determined to be 1.08 g/mL.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-74°F (22-23°C) and 40-53%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each

batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) were provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 9 weeks of age and weighed 265-290 g prior to dosing. The female animals were approximately 9 weeks of age and weighed 189-207 g prior to dosing. (11)

SLI Study No. 3596.17

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

On day -1, the fur was removed from the dorsal trunk area of the animals chosen for the limit test using an animal clipper. The clipped area was approximately 10% of the animal's body surface area (BSA). The region included the scapula (shoulder) to the wing of the ilium (hipbone) and half way down the flank on each side of the animal. Care was taken to avoid abrading the skin during the clipping procedure.

9.2. Dosing

On the following day (day 0), the test article was administered dermally to approximately 10% of the body surface area. The four corners of this area were delineated in the clipped area with an indelible marker. The test article was then spread evenly over the delineated test area and held in contact with the skin with an appropriately sized 4-ply porous gauze dressing backed with a plastic wrap which was placed over the gauze dressing (occlusive binding). Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area. The elastic wrap was further secured with a tape harness on the cranial end of the trunk and then secured with adhesive tape around the trunk at the caudal end.

The test article was administered at the following level:

Dose Level	Dose Volume	Concentration	No. of	Animals
(mg/kg)	(mL/kg)	(%)	Male	Female
5000	4.63 ^a	100 ^b	5	5

^aAdjusted based on a density of 1.08 g/mL. ^bPooled test article.

Individual doses were calculated based on the animal's day 0 body weight. After an approximate 24-hour exposure period, the binding materials were removed and the corners of the test site were re-delineated using a marker. Residual test article was removed using gauze moistened with deionized water followed by dry gauze.

9.3. Dermal Observations

The test animals were examined for erythema and edema following patch removal and the responses scored on study day 1 and daily thereafter

(days 2-14) according to the Macroscopic Dermal Grading System provided in Appendix A which is based on Draize [2]. The dermal test sites were reclipped as necessary to allow clear visualization of the skin.

9.4. Clinical Observations

The animals were observed for clinical abnormalities two times on study day 0 (postdose) and daily thereafter (days 1-14). A mortality check was performed twice daily, in the morning and afternoon.

9.5. Body Weights

Individual body weights were obtained for the animals prior to dosing on day 0 and on days 7 and 14.

9.6. Gross Necropsy

All animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.7. Protocol Deviations

On study day 1, edema was inadvertently not recorded for Animal No. A6709. This occurrence was considered to have had no adverse effect on the outcome of this study.

10. DATA ACQUISITION AND ELECTRONIC RECORDS

Electronic data were recorded on a Compaq Alpha Server DS10 utilizing the Toxicology Analysis System Customized, Acute Toxicology Module, Version 1.0.0 or higher. The SLI study number assigned to this study is 3596.17. The computer study number used to collect data for the study phases was 359617. The tables within the report will display the applicable computer number.

11. ANALYSIS OF DATA

Data from the study were analyzed and an LD50 value estimated as follows:

- < 50% Mortality: LD50 was estimated as greater than the administered dose.
- = 50% Mortality: LD50 was estimated as equal to the administered dose.
- > 50% Mortality: LD50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females.

12. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and electronic records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

13. RESULTS

13.1. Mortality

Individual Data: Table 1

No mortality occurred during the limit test.

13.2. Clinical/Dermal Observations

Individual Data: Table 1

Clinical abnormalities observed during the study included transient incidences of dark material around the facial area and decreased defecation. Dermal irritation was noted at the site of test article application.

13.3. Body Weight Data

Individual Data: Table 2

Body weight loss was noted in one male and two females during the study day 7 to 14 body weight interval. Body weight gain was noted for all other animals during the test period.

13.4. Gross Necropsy Individual Data: Table 3

No significant gross internal findings were observed at necropsy on study day 14.

14. CONCLUSION

Under the conditions of this test, the acute dermal LD50 of Spray--Charlie was estimated to be greater than 5000 mg/kg in the rat.

Kimberly L. Bonnette, M.S., LATG Study Director

15. REPORT REVIEW

Date 2 20 03

Rusty E. Rush, M.S., LATG Director, Neurotoxicity and Transgenics

Date 2-20-03

16. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.

PAGE 1

(16)

	OF STATE
359617	DEPARTMENT
NO. :	U. S.
STUDY	I NL/A,

TABLE 1

AN ACUTE DERMAL TOXI CITY STUDY IN RATS

I NDI VI DHAL CLINI CAL OBSERVATI ONS

7 8 9 10 11 12 13 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
DAY 0F STUDY 0 1 2 3 4 5 6		4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
OBSERVATI ONS	SCHEDULED EUTHANASI A SOFT STOOLS EDEMA GRADE O ERYTHEMA GRADE O DARK MATERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE ERYTHEMA GRADE 1	SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE ERYTHEMA GRADE 2 ERYTHEMA GRADE 2

60

STUDY NO.: 359617 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

PAGE 2

AN ACUTE DERMAL TOXI CITY STUDY IN RATS

I NDI VI DUAL CLI NI CAL OBSERVATI ONS

		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		12	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		Ξ	<u>م</u> م	
		10	<u>с</u> с	RAL
		- 6	 	LATE
		2	 	=BI]
5	DΥ	. 9	പപ	
(POSI TI VE FI NDI NGS)	DAY OF STUDY	0 1 2 3 4 5 6 7	പപ	GHT
(POSI TI VE FI NDI NGS)	0F	4	പപ	R=RI
E	DAY	. w	 	
IVE		1 2		LEFI
SIT		0		Ц.
(POSI TI VE FI NDI NGS)		1	4 4	P=PRESENT
				3=SEVERE
			HANASI A E 0 AROUND EYE(S) AROUND NOSE	2=MODERATE
5000 MG/KG		OBSERVATI ONS	 SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE 	GRADE CODE: 1=SLI GHT 2=MODERATE 3=SEVERE P=PRESENT L=LEFT R=RI GHT B=BI LATERAL
MALES 5			A6703	GRADE CODI

Annex	56-A
Annex	56-A

PAGE 3

STUDY NO.: 359617 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

AN ACUTE DERMAL TOXI CITY STUDY IN RATS

"", "", Folgare Folga" Fronta Fronta Fol	5000 MG/KG DAY OF STUDY	OBSERVATI ONS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	SCHEDULED EUTHANASI APPPPPPPPPPPPPPPPPPPPPPPPPPAA	SCHEDULED EUTHANASIA EDEMA GRADE 0 ERYTHEMA GRADE 0 DARK MATERIAL AROUND EYE(S) P P P P P P P P P P P P P	SCHEDULED EUTHANASI APPPFEW FECESPPPPPEDEM GRADE OPPPPPPERYTHEMA GRADE OPPPPPPDARK MATERIAL AROUND EYE(S)PPPPPDARK MATERIAL AROUND NOSEPPPPP	SCHEDULED EUTHANASI A FEW FECES EDEMA GRADE O ERYTHEMA GRADE O DARK MATERIAL AROUND NOSE P	SCHEDULED EUTHANASIA EDEMA GRADE O ERYTHEMA GRADE O P P P P P P P P P P P P P P P P P P P
--	----------------------------	--	---	---	--	---	--

STUDY NO.: 359617 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

PAGE 1

AN ACUTE DERMAL TOXICITY STUDY IN RATS	INDIVIDUAL BODY WEIGHTS (GRAME)	14 AT DEATH (DAY)	0 299 3 334 2 315 2 315 3 315 3 315 3 15 8 13.0
			299 234 334 315 315 308 315 315 315 13.0
		DAY OF STUDY 0 7	31 31 28 29 28 29 28 29 28 29 28 29 29 29 29 20 20
	5000 MG/KG	DAY DAY 0	273 290 265 271 271 271 274 9.4
	MALES 5000	ANI MAL#	A6684 A6696 A6698 A6697 A6697 A6703 A6703 MEAN S. D.

STUDY NO.: 359617 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

PAGE 2

AN ACUTE DERMAL TOXICITY STUDY IN RATS	INDIVIDUAL BODY WEIGHTS (GRAME)	14 AT DEATH (DAY)			
		÷	223 196 182	209 220	206 17.1 5
		OF STUDY 7	215 227 208	$201 \\ 210$	212 9.7 5
	MG/KG	0 0	204 207 191	$\begin{array}{c} 189\\ 204 \end{array}$	199 8.3 5
	FEMALES 5000 MG/KG	ANI MAL#	A6709 A6710 A6715	A6716 A6720	MEAN S. D. N

INL/A, U.S. DEPARTMENT OF STATE	5. DEPARTMEN	VT OF ST	TARLE 3	
			AN ACUTE DERMAL TOXICITY STUDY IN RATS	
MALES 5	5000 MG/KG		INDIVIDUAL GROSS NECROPSY OBSERVATIONS	
ANI MAL#	DAY OF DEATH	STUDY DAY	OBSERVATION	FATE
A6684	2-JAN-03 14	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6696	2-JAN-03	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6698	2- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6697	2-JAN-03 14	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6703	2- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA

(21)

65

PAGE 2			FATE	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASI A
STATE TABLE 3	AN ACUTE DERMAL TOXICITY STUDY IN RATS	INDIVIDUAL GROSS NECROPSY OBSERVATIONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS				
r of st			STUDY DAY	14	14	14	14	14
STUDY NO.: 359617 INL/A, U.S. DEPARTMENT OF		FEMALES 5000 MG/KG	DAY OF DEATH	2-JAN-03	2-JAN-03	2-JAN-03	2-JAN-03	2-JAN-03
STUDY NO.: I NL/A, U. S		FEMALES	ANI MAL#	A6709	A6710	A6715	A6716	A6720

(22)

Annex 56-A

Annex 56-A

(23)

SLI Study No. 3596.17

APPENDIX A

Macroscopic Dermal Grading System

MACROSCOPIC DERMAL GRADING SYSTEM

ERYTHEMA AND EDEMA OBSERVATIONS		
OBSERVATION	DEFINITION	CODE
Erythema – Grade 0	No erythema	0
Erythema – Grade 1	Very slight erythema (barely perceptible)	1
Erythema – Grade 2	Well-defined erythema	2
Erythema – Grade 3	Moderate to severe erythema	3
Erythema – Grade 4	Severe erythema (beet redness)	4
Maximized Grade 4	Notable dermal lesions (see below)	M – 4 (see below)
Edema – Grade 0	No edema	0
Edema – Grade 1	Very slight edema (barely perceptible)	1
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	2
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	3
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	4
NOTE: Each animal was assigned an arythema and odoma score. The most soverely affected		

NOTE: Each animal was assigned an erythema and edema score. The most severely affected area within the test site was graded. If eschar, blanching, ulceration and/or necrosis greater than grade 1 was observed, then the "Maximized Grade 4" was assigned to the test site in place of the erythema score and the type of notable dermal lesion(s) (e.g., eschar - grade 2, blanching - grade 3, ulceration - grade 4, etc.) was noted. The presence of any other dermal changes (e.g., desquamation, fissuring, eschar exfoliation, etc.) was also recorded.

MACROSCOPIC DERMAL GRADING SYSTEM

	NOTABLE DERMAL LESIONS				
OBSERVATION	CODE	DEFINITION			
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.			
Eschar – Grade 2	ES-2	> 10% < 25% of test site.			
Eschar – Grade 3	ES-3	> 25% < 50% of test site.			
Eschar – Grade 4	ES-4	> 50% of test site.			
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.			
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.			
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.			
Blanching – Grade 4	BLA-4	> 50% of test site.			
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.			
Ulceration – Grade 2	U-2	> 10% < 25% of test site.			
Ulceration – Grade 3	U-3	> 25% < 50% of test site.			
Ulceration – Grade 4	U-4	> 50% of test site.			
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (Note color of necrosis).			
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (Note color of necrosis).			
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (Note color of necrosis).			
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (Note color of necrosis).			

-

SLI Study No. 3596.17

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL DERMAL FINDINGS					
OBSERVATION	DEFINITION	CODE			
Desquamation	Characterized by scaling or flaking of dermal tissue with or without denuded areas.	DES			
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS			
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF			
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)			
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB			
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).				
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1			
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2			
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3			
Superficial Lightening - Grade 4	> 50% of test site	SL-4			

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL FINDINGS				
OBSERVATION	DEFINITION	CODE		
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which do not interfere with the scoring of the test site.	IT		

Annex 56-A

(28)

SLI Study No. 3596.17

APPENDIX B

SLI Personnel Responsibilities

Annex 56-A

(29)

SLI Study No. 3596.17

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Malcolm Blair, Ph.D.	Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	General Manager
Rusty E. Rush, M.S., LAT, DABT	Director, Neurotoxicity and Transgenics
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Study Supervisor, Acute Toxicology
Christina L. Zehender, B.S.	Primary Technician/Acute Technician I
Delores P. Knippen	Supervisor, Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor, Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Cheryl Bellamy	Senior Supervisor, Report Writing
Deanna M. Talerico, RQAP-GLP	Senior Supervisor, Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Archivist

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS WITH SPRAY--CHARLIE

FINAL REPORT

OPPTS Guidelines

870.1300

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

March 14, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.18

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 52

(2)

SLI Study No. 3596.18

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent: Date	
---------------------	--

Title

Signature

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

(3)

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories

olk

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 11 MAR 03

Annex 56-A

SLI Study No. 3596.18

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	<u>Date</u>
Protocol Review	10/07/02
Animal Receipt	01/02/03
Clinical Observations	01/17/03
Analytical Chemistry Review	01/27/03
Analytical Chemistry Report Review	01/27/03
Data Audit	03/10/03
Draft Report Review	03/10/03
Final Report Review	03/14/03
Reports to Study Director	01/02/03, 03/10/03,
and Management	03/14/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

berry a. young

Rebecca A. Young / / / Quality Assurance Team Leader

Date 3/14/03

Chita In Broan

Ánita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date <u>3/14/03</u>

(5)

SLI Study No. 3596.18

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES
6. SUMMARY7
7. INTRODUCTION
8. MATERIALS AND METHODS
9. EXPERIMENTAL PROCEDURES 11
10. ANALYSIS OF DATA 14
11. MAINTENANCE OF RAW DATA AND RECORDS 14
12. RESULTS
13. CONCLUSION
14. REPORT REVIEW 16
15. REFERENCE

Annex 56-A

(6)

SLI Study No. 3596.18

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

2. 3.	Summary of Aerosol Generation and Chamber Environmental Data Individual Clinical Observations Individual Body Weights Individual Gross Necropsy Observations	. 19 . 23
<u>Fig</u>	<u>ure</u>	
1.	Multi-Stage 10L Nose-Only Inhalation Chamber	. 27
<u>Ap</u>	pendices	
A.	Preliminary Aerosol Generation Trials	. 28
В.	Analytical Chemistry Report	.36
C.	Individual Aerosol Generation and Chamber Environmental Data	.43
D.	SLI Personnel Responsibilities	.51

6. SUMMARY

The four-hour nose-only inhalation toxicity of Spray--Charlie was evaluated in Sprague Dawley rats. A limit test was performed in which a group of five male and five female rats received a four-hour nose-only inhalation exposure to a time-weighted average aerosol concentration (analytically determined) of 2.60 mg/L. The mass median aerodynamic diameter and geometric standard deviation of the sampled particles were 2.9 μ ± 2.17. The percentage of particles \leq 4.0 μ was determined to be 66%. Following the exposure, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all limit test animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the study. The most notable clinical abnormalities observed during the study included breathing abnormalities, no/decreased defecation, urine staining, rough haircoat, dark material around the facial area and decreased food consumption. Body weight loss was noted in two males and one female during the day 0 to 7 body weight interval. Body weight gain was noted for all other animals during the test period. At study termination, the animals had exceeded/maintained their initial body weight. No gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute inhalation LC50 of Spray--Charlie was estimated to be greater than 2.60 mg/L in the rat (which was well above the EPA-required 2.00 mg/L).

(8)

SLI Study No. 3596.18

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Charlie in Sprague Dawley rats when administered by a four-hour nose-only inhalation exposure. This study was intended to provide information on the potential health hazards of the test article with respect to inhalation exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1300, Acute Inhalation Toxicity, August, 1998. This study was performed at Springborn Laboratories (SLI), 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on January 14, 2003 (day 0) and concluded with terminal euthanasia on January 28, 2003.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

SLI ID	Description	Date	Expiration Date
S02.003.3596	Amber liquid	12/09/02	None provided
			None
			provided
			None
			provided
	S02.003.3596	S02.003.3596 Amber liquid	S02.003.3596 Amber 12/09/02

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test articles were pooled and administered as received from the Sponsor and dispensed fresh on the day of dosing. The pooled test article was stirred approximately 10 minutes prior to dispensation and stirred continuously during dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 64-68°F (18-20°C) and 37-55%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study (except during the time that the animals were

acclimated to the exposure tubes and maintained in the inhalation room for the exposure procedure). The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study (except during the time that the animals were acclimated to the exposure tubes and maintained in the inhalation room for the exposure procedure). The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 9 weeks of age and weighed 248-275 g on the day of exposure. The female animals were approximately 9 weeks of age and weighed 201-212 g on the day of exposure.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

9.1.1. Test Article Volatility Determination

The volatility of the test article relative to a distilled water standard was determined prior to experimental initiation. This procedure was performed in order to determine if the test article had sufficiently low volatility to allow for an accurate gravimetric determination of the aerosol concentration. A known quantity of the test article was placed on a preweighed filter disk and was allowed to evaporate for a total of ten minutes. The test article weight was determined each minute and the amount of evaporation of the test article was then determined. The results of this volatility trial indicated that the test article evaporation rate (0.82 mg/minute) was only slightly higher than the SLI determined distilled water evaporation rate (0.55 mg/minute); therefore was considered to not be volatile.

9.1.2. Preliminary Aerosol Generation Trials

Prior to experimental initiation, preliminary aerosol generation trials were conducted. These trials were performed in order to determine the most efficient means of generating an aerosol of the appropriate concentration while utilizing equipment that would reduce the aerodynamic particle size. Data obtained during the preliminary aerosol generation trials are presented in Appendix A.

9.2. Limit Test

9.2.1. Aerosol Generation Equipment

The test aerosol was generated with a Pistol Spraying System and a Master Flex Pump and Pump Heads 77200-60 and 7523-30. Conditioned high pressure external air was used in generating the test atmosphere. The aerosol was blown through a 5L Elutriator, the Multi-Stage 10L nose-only inhalation chamber and then vented from the chamber to an air treatment system which consisted of a prefilter, a HEPA filter, a charcoal bed and a water scrubbing tower (see Figure 1).

9.2.2. Dosing

On day 0, the animals chosen for the limit test were weighed, placed in a noseonly exposure tube and allowed to acclimate to the exposure tube for at least 1 hour. Animals that appeared to have been acclimated to the exposure tube (i.e., minimal struggling and no inversion) were considered to be acceptable,

removed from the exposure tube and returned to their cages until initiation of the aerosol exposure. Animals that did not appear to acclimate to the exposure tube were not acceptable, removed from the exposure tube and returned to their cages.

The acceptable animals were then placed in exposure tubes, the tubes inserted into the Multi-Stage 10L nose-only inhalation chamber and the test article aerosolized at the following level:

Exposure Level (mg/L)	No. of Animals		
	Male	Female	
2.60	5	5	

The aerosol exposure consisted of a 3-minute T99 equilibration period, a 240-minute exposure period and a 3-minute de-equilibration period equal to the T99 equilibration period. After each aerosol exposure, animals were removed from the exposure tubes and residual test article was removed from the animal's exterior surfaces (where practical) by wiping the haircoat with a towel. The animals were then returned to ad libitum feed and water. The following parameters were measured during the exposure.

9.2.2.1. Chamber Air Flow

Air flow readings were recorded at the initiation of the T99 equilibration period, at approximate 30-minute intervals during the aerosol exposure and at the conclusion of the de-equilibration period.

9.2.2.2. Aerosol Concentration

The aerosol concentration was measured at the beginning of the aerosol exposure (after equilibration), at approximate 30-minute intervals during the aerosol exposure and at the conclusion of the aerosol exposure (before de-equilibration). The concentration of the test article aerosol was collected in the inhalation chamber by gravimetric technique. A 5 L sample of the aerosol was drawn from the breathing zone of the chamber through a preweighed glass fiber filter. The change in weight of the filter (mg) was then determined and this value was divided by the volume of chamber atmosphere sampled (L) to yield the gravimetric concentration (mg/L). The average time-weighted gravimetric concentration, the gravimetrically obtained samples were analyzed by Springborn Laboratories for the glyphosate component, a non-volatile component of the test article. These analyses were performed in order to determine the analytical (actual) concentrations of the aerosol in the chamber for each sampling period. The average time weighted analytical concentration of the

test atmosphere was then calculated for the exposure. Chemistry methods and results are detailed in the Analytical Chemistry Report (Appendix B).

9.2.2.3. Chamber Temperature and Humidity

The chamber temperature and humidity were measured electronically and recorded at approximate 30-minute intervals during the aerosol exposure using a Vaisala HMI 41 Thermometer.

9.2.2.4. Aerosol Aerodynamic Particle-Size Distribution

The aerosol aerodynamic particle-size distribution was determined three times during the aerosol exposure using the ITP 7 Stage Cascade Impactor. Each stage of the impactor was fitted with a preweighed glass fiber filter. Five liters per minute of the chamber air were drawn through the impactor and the change in weight of each filter was then determined and recorded. The mean particle-size distribution was subsequently determined using an Excel computer adaptation of the manual method. The Mass Median Aerodynamic Diameter, Geometric Standard Deviation and percentage of particles $\leq 4.0 \,\mu$ were then determined. At least one hour passed between each aerosol particle-size analysis.

9.2.2.5. Chamber Oxygen

Chamber oxygen content was measured and recorded at approximate 30-minute intervals during the aerosol exposure using a GC-501 Oxygen Sensor.

9.2.3. Clinical Observations

The limit test animals were observed for clinical abnormalities during each aerosol exposure, two times on study day 0 (post-exposure) and daily thereafter (days 1-14). A general health/mortality check was performed twice daily (in the morning and in the afternoon).

9.2.4. Body Weights

Individual body weights were obtained for the limit test animals prior to dosing on day 0 and on days 7 and 14.

9.2.5. Gross Necropsy

All limit test animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.3. Protocol Deviations

The temperature of the animal room [64-68°F (18-20°C)] exceeded the preferred range [66-77°F (19-25°C)] during this study. This occurrence was considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

Data from the limit tests were analyzed and an LC50 value estimated as follows:

- < 50% Mortality: LC50 was estimated as greater than the administered dose.
- = 50% Mortality: LC50 was estimated as equal to the administered dose.
- > 50% Mortality: LC50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females. The aerodynamic particle-size distribution of the test article aerosol was plotted using an Excel computer adaptation of the three cycle logarithmic probability paper as per the ITP Cascade Impactor instruction manual. The Mass Median Aerodynamic Diameter, Geometric Standard Deviation and particles \leq 4.0 µ were determined based on the plotted distribution.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and electronic encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Aerosol Generation and Chamber Environmental Data

12.1.1. Aerosol Generation Data

Individual Data: Table 1

The average time-weighted analytical concentration for the aerosol exposure was determined to be 2.60 mg/L. The mass median aerodynamic diameter and geometric standard deviation of the sampled particles were $2.9\mu \pm 2.17$. The percentage of particles $\leq 4.0 \mu$ was determined to be 66%.

12.1.2. Chamber Environmental Data

Individual Data: Table 1

Chamber temperature and relative humidity for the aerosol exposure ranged from 68.3-70.7°F and 68.3-69.3%, respectively. Oxygen content was maintained at 20.9% throughout the exposure.

12.2. Limit Test Data

12.2.1. Mortality Individual Data: Table 2

No mortality occurred during the study.

12.2.2. Clinical Observations

Individual Data: Table 2

No positive findings were noted at the time of observation during the 4-hour exposure period. The most notable clinical abnormalities observed during the study included breathing abnormalities, no/decreased defecation, urine staining, rough haircoat, dark material around the facial area and decreased food consumption.

12.2.3. Body Weight Data

Individual Data: Table 3

Body weight loss was noted in two males and one female during the day 0 to 7 body weight interval. Body weight gain was noted for all other animals during the test period. At study termination, the animals had exceeded/maintained their initial body weight.

12.2.4. Gross Necropsy

Individual Data: Table 4

No gross internal findings were observed at necropsy on study day 14.

Annex 56-A

SLI Study No. 3596.18

13. CONCLUSION

Under the conditions of this test, the acute inhalation LC50 of Spray--Charlie was estimated to be greater than 2.60 mg/L in the rat (which was well above the EPA-required 2.00 mg/L).

Kimberly L. Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S. Toxicologist

Date

Date <u>3/14/03</u>

15. REFERENCE

1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.

ExPOSURE LEVEL (MGL) 2.60 CHAMBER AND EXPOSURE DATA CHAMBER VOLUME (L): EUTRATOR VOLUME (L): EUTRATOR VOLUME (L): EUTRATOR VOLUME (L): MEAN ART FLOW RATE (L/MN): MEAN AR CHANGES PER HOUR: 799 EQUILIBRATION PERIOD (MNL): EXPOSURE TIME (MN): DE-EQUILIBRATION PERIOD (MNL): DE-EQUILIBRATION PERIOD (MNL): CALCULATED NOMINAL CONCENTRATION (MGL): DE-EQUILIBRATION PERIOD (MNL): CALCULATED NOMINAL CONCENTRATION (MGL): MEAN ARE CONCENTRATION (MGL): CALCULATED NOMINAL CONCENTRATION (MGL): MEAN ARE CONCENTRATION (MGL): CALCULATED NOMINAL CONCENTRATION (MGL): MEAN AREICHES (L): CALCULATED NOMINAL CONCENTRATION (MGL): MEAN AREICHES (MARC) MARE MEINTRON PERIOD (MNL): CALCULATED NOMINAL CONCENTRATION (MGL): MILENTRON PERIOD (MNL): MARE MEINTRON MARC (P): MARE MARTINE RAURE (P):	STUDY NO.: 3596.18 AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INL/A, U.S. DEPARTMENT OF STATE SUMMARY OF AEROSOL GENERATION AND CHAMBER ENVIRONMENTAL DATA	DN TOXICITY STUDY IN RATS GENERATION AND MENTAL DATA
TON (MG/L):		EXPOSURE LEVEL (MG/L)
TION (MG/L):		2.60
.TON (MG/L);	CHAMBER AND EXPOSURE DATA	
TION (MG/L):	CHAMBER VOLUME (L):	10
TION (MG/L):	ELUTRIATOR VOLUME (L):	Q
.TION (MGL):	MEAN AIR FLOW RATE (L/MIN):	24
.TION (MG/L);	MEAN AIR CHANGES PER HOUR:	95.24
TION (MG/L):	T99 EQUILIBRATION PERIOD (MIN.):	Э
.TION (MGL):	EXPOSURE TIME (MIN):	240
.TION (MG/L):	DE-EQUILIBRATION PERIOD (MIN):	Э
TION (MG/L):	AEROSOL CONCENTRATIONS	
CONCENTRATION (MG/L): ETER (µ): (%):	CALCULATED NOMINAL CONCENTRATION (MG/L):	70.30
ETER (µ): (%):	TIME-WEIGHTED MEAN ANALYTICAL CONCENTRATION (MG/L):	2.60
	AEROSOL PARTICLE-SIZE ANALYSIS	
	MASS MEDIAN AERODYNAMIC DIAMETER (µ):	2.9
	GEOMETRIC STANDARD DEVIATION:	±2.17
	PERCENTAGE OF PARTICLES \leq 4.0 µ (%):	66
(°F):	CHAMBER ENVIRONMENTAL DATA	
	TEMPERATURE RANGE (°F):	68.3-70.7
	HUMIDITY RANGE (%):	68.3-69.3
	OXYGEN CONTENT (%):	20.9

TABLE 1 AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS STUDY NO.: 3596.18

(18)

91

TY STUDY IN RATS ATLONS	DAY OF STUDY	5 6 7 8 9 10 11 12 13 14	۵ ۹	۵.	4 4 4 4 4 4 4 4 4 4 4 4 4 4	A A A A A A A A A A A A A A A A A A A	GHT B=BI LATERAL
TABLE 2 AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)	D4	0 1 2 3 4	م م م م م م م م م	4 4 4	444 444 444 444 444 444 444 444 444 44		3=SEVERE P=PRESENT L=LEFT R=RIGHT
U. S. DEPARTMENT OF STATE MALES 2. 60 MG/L		MALE# 0BSERVATI ONS	A6829 SCHEDULED EUTHANASI A CONGESTED BREATHI NG RALES NO FECES FEW FECES DARK MATERI AL AROUND NOSE DECREASED FOOD CONSUMPTI ON	A6830 SCHEDULED EUTHANASI A CONGESTED BREATHI NG RALES	A6831 SCHEDULED EUTHANASI A CONGESTED BREATHI NG RALES FEW FECES ROUGH COAT DARK MATERI AL AROUND NOSE DECREASED FOOD CONSUMPTI ON	A6832 SCHEDULED EUTHANASI A CONGESTED BREATHI NG RALES LABORED BREATHI NG GASPI NG GASPI NG FEW FECES ROUGH COAT DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE DCREASED FOOD CONSUMPTI ON	GRADE CODE: 1=SLIGHT 2=MODERATE

(19)

PAGE 1

STUDY NO.: 359618

PAGE 2				
AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDING)	DAY OF STUDY	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
STUDY NO.: 359618 U.S. DEPARTMENT OF STATE MALES 2.60 MC/L		MALE# 0BSERVATI ONS	A6833 SCHEDULED EUTHANASIA CONGESTED BREATHING RALES LABORED BREATHING GASPING GASPING NO FECES FEW FECES UNKEMPT APPEARANCE FECAL STAIN ROUCH COAT DARK MATERIAL AROUND NOSE DARK MATERIAL AROUND NOSE DARK MATERIAL AROUND NOSE DECREASED FOOD CONSUMPTION	GRADE CODE: 1=SLIGHT 2=MODERATE

PACE 9

93

(20)

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)

Annex 56-A

(21)

PAGE 4			
AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)	DAY OF STUDY 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
STUDY NO.: 359618 U.S. DEPARTMENT OF STATE FEMALES 2. 60 MG/L	FEMALE# 0BSERVATI ONS	A6853 SCHEDULED EUTHANASI A CONCESTED BREATHI NG RALES LABORED BREATHI NG GASPI NG GASPI NG NO FECES FEW FECES REW FECES REW FECES ROUGL COAT COOL TO TOUCH DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE	GRADE CODE: 1=SLIGHT 2=MODERATE 3:

(22)

Annex 56-A

95

STUDY NO.: 359618 U.S. DEPARTMENT OF STATE

TABLE 3

PAGE 1

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

ļ I NDI VI DUAL BODY WEI GHTS (GRAMS) 14 AT DEATH (DAY) 318 304 279 257 303 292 24. 2 5 DAY OF STUDY 0 7 $\begin{array}{c} 264 \\ 14.0 \\ 5 \end{array}$ 278 269 272 243 256 $\begin{array}{c} 265\\ 11.5\\ 5\end{array}$ 274 259 270 248 275 MALES 2. 60 MG/L ANI MAL# A6829 A6830 A6831 A6833 A6833 A6833 MEAN S. D. N

STUDY NO.: 359618 U.S. DEPARTMENT OF STATE

TABLE 3

PAGE 2

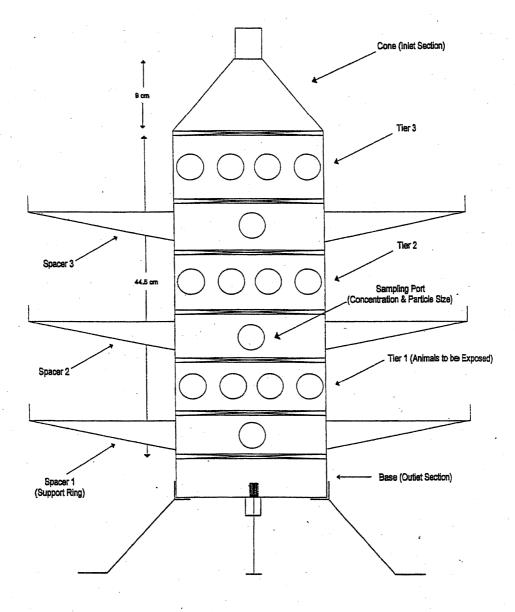
STUDY IN RATS	(AMS)									
AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS	INDI VI DUAL BODY WEI GHTS (GRAMS)	STUDY 7 14 AT DEATH (DAY)		5 252					0 19.6	
	G/L	DAY 0F	· 8	212 235			208 219	207 218	15	5
	FEMALES 2.60 MG/L	ANI MAL#	A6849	A6850	A6851	A6853	A6860	MEAN	S. D.	N

(24)

PAGE 1	XICITY STUDY IN RATS	/ OBSERVATI ONS	FATE	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASIA
TABLE 4	AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS	I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS				
VTE			STUDY DAY	14	14	14	14	14
STUDY NO.: 359618 U.S. DEPARTMENT OF STATE		2.60 MG/L	DAY OF S DEATH	28- JAN- 03				
STUDY NO. : U. S. DEPAF		MALES 2.	ANI MAL#	A6829	A6830	A6831	A6832	A6833

(25)

Annex 56-A


STUDY NO.: 359618 U.S. DEPARTMENT OI	STUDY NO.: 359618 U.S. DEPARTMENT OF STATE	ATE	TADIE A	PAGE 2
			INDLE 4	
			AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS	
FEMALES 2. 60 MG/L	60 MG∕L		I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	
ANI MAL#	DAY OF DEATH	STUDY DAY	OBSERVATI ON	FATE
A6849	28- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASI A
A6850	28- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS SALES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASI A
A6851	28- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS SALES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6853	28- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS SALES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A6860	28- JAN- 03	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1			

99

(26)

...

SLI Study No. 3596.18

MULTI-STAGE 10 L NOSE-ONLY INHALATION CHAMBER

Figure 1

Annex 56-A

(28)

SLI Study No. 3596.18

APPENDIX A

Preliminary Aerosol Generation Trials

1. PRELIMINARY AEROSOL GENERATION TRIALS

Prior to experimental initiation, preliminary aerosol generation trials were conducted. These trials were performed to determine the appropriate means of generating the aerosol exposure atmosphere of the test article at the targeted gravimetric/analytical concentration of (2.00 mg/L, initially) and the aerodynamic particle size (1-4 microns Mass Median Aerodynamic Diameter). The type of equipment used during each trial procedure is presented in the table that follows.

It was determined that since the gravimetric concentration was proportional to the analytical concentration it could be used as a "real time" estimate for the actual analytical concentration thus allowing for changes during the exposure. The results of the trials indicated that the equipment utilized during Trials # 1-7 produced an analytical concentration greater than 2.00 mg/L utilizing a pump speed of 1.2 mL/minute or greater. In addition, the aerodynamic particle size distribution was determined using the ITP 7 Stage Cascade Impactor during Trial # 2 and was acceptable $(3.0 \pm 1.78 \mu)$. Therefore, this equipment design was used for the study exposure.

Note: The ability to generate a target gravimetric concentration of ≥ 0.5 mg/L (Trials # 8-10) were also explored. These trials revealed that the gravimetric concentrations were also proportional to the analytical concentration at lower concentrations. The trials provide an indication of the settings necessary to achieve the target analytical concentration and that the gravimetric concentrations could be used as a "real time" estimate of the analytical concentration at lower concentration at lower concentrations in case additional levels would have been required.

STUDY NO.: 3596.18 INL/A, U.S. DEPARTMENT OF STATE

TRIAL TABLE 1 PRELIMINARY AEROSOL GENERATION TRIALS

PAGE 1

LE MAXIMUM ATTAINABLE N- CONCENTRATIONS (MG/L) (%) GRAVIMETRIC ANALYTICAL	2.94	2.52 4.829		2.54 4.688
ARTICLE INPUT CONCEN- AIR (PSI) TRATION (%)	30	30 100		30
	One Multi-Stage 10L Nose-Only Chamber 5L Elutriator Master Flex Pump and Pump Heads 7523-30 and 77200-60 Spraying Systems, Pistol Air/Fluid Mixing Nozzle	5.0 mL/min pump speed 14 gauge tubing size One Multi-Stage 10L Nose-Only Chamber 5L Elutriator	ITP 7 Stage Cascade Impactor Master Flex Pump and Pump Heads 7523-30 and 77200-60 Spraying Systems, Pistol Air/Fluid Mixing Nozzle 4.0 mL/min pump speed 14 gauge tubing size	One Multi-Stage 10L Nose-Only Chamber 5L Elutriator Master Flex Pump and Pump Heads 7523-30 and 77200-60 Spraying Systems, Pistol Air/Fluid Mixing Nozzle 4.0 mL/min pump speed 14 gauge tubing size
TRIAL NO.	~	5		r

(30)

103

MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L) WIMETRIC ANALYTICAL	0	۹ ۵	3.169
MAXIMUN CONCENTF GRAVIMETRIC	1.60	1.36	1.50
TEST ARTICLE CONCEN- TRATION (%)	100	100	100
INPUT AIR (PSI)	30	30	30
EQUIPMENT USED	One Multi-Stage 10L Nose-Only Chamber 5L Elutriator Master Flex Pump and Pump Heads 7523-30 and 77200-60 Spraying Systems, Pistol Air/Fluid Mixing Nozzle 2.0 mL/min pump speed 14 gauge tubing size	One Multi-Stage 10L Nose-Only Chamber 5L Elutriator Master Flex Pump and Pump Heads 7523-30 and 77200-60 Spraying Systems, Pistol Air/Fluid Mixing Nozzle 1.5 mL/min pump speed 14 gauge tubing size	One Multi-Stage 10L Nose-Only Chamber 5L Elutriator Master Flex Pump and Pump Heads 7523-30 and 77200-60 Spraying Systems, Pistol Air/Fluid Mixing Nozzle 1.8 mL/min pump speed 14 aude tubing size
TRIAL NO.	4	ى ا	ω

Note: Targeting ≥ 3.00 mg/L analytical and ≥ 1.50 mg/L gravimetric concentration for Trials 4-6.

PAGE 2

TRIAL TABLE 1 PRELIMINARY AEROSOL GENERATION TRIALS

STUDY NO.: 3596.18 INL/A, U.S. DEPARTMENT OF STATE

STUDY NO.: 3596.18 INL/A, U.S. DEPARTMENT OF STATE

TRIAL TABLE 1 PRELIMINARY AEROSOL GENERATION TRIALS

		INPUT	ARTICLE CONCEN-	MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L)	TAINABLE ONS (MG/L)
TRIAL NO.	EQUIPMENT USED	AIR (PSI)	TRATION (%)	GRAVIMETRIC	ANALYTICAL
~	One Multi-Stage 10L Nose-Only Chamber 5L Elutriator	30	100	1.60	2.940
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	14 gauge tubing size				
8	One Multi-Stage 10L Nose-Only Chamber	30	100	0.86	1
	Master Flex Pump and Pump Heads 7523-30 and				
	Spraving Systems. Pistol Air/Fluid Mixing Nozzle				
	14 gauge tubing size				
6	One Multi-Stage 10L Nose-Only Chamber	30	100	0.52	1.202
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	0.5 mL/min pump speed 14 gauge tubing size				
ote: Targei	Note: Targeting ≥ 3.00 mg/L analytical and ≥ 1.50 gravimetric concentration for Trial 7.	concentration	for Trial 7.		
Targe	Targeting \ge 1.00 mg/L analytical and gravimetric concentration for Trials 8-9.	tration for Tri	als 8-9.		

(32)

PAGE 3

105

MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L)	GRAVIMETRIC ANALYTICAL	0.46 1.311					1.30							0.64							
TEST ARTICLE CONCEN-	TRATION (%)	100					100							100							als 10-12.
INPUT	AIR (PSI)	30					30							30							ation for Tri
	EQUIPMENT USED	One Multi-Stage 10L Nose-Only Chamber	or Eluriator Master Flex Pump and Pump Heads 7523-30 and	Spraying Systems, Pistol Air/Fluid Mixing Nozzle	0.5 mL/min pump speed	14 gauge tubing size	One Multi-Stage 10L Nose-Only Chamber	5L Elutriator	Master Flex Pump and Pump Heads 7523-30 and	77200-60	Spraying Systems, Pistol Air/Fluid Mixing Nozzle	1.2 mL/min pump speed	14 gauge tubing size	One Multi-Stage 10L Nose-Only Chamber	5L Elutriator	Master Flex Pump and Pump Heads 7523-30 and	77200-60	Spraying Systems, Pistol Air/Fluid Mixing Nozzle	1.0 mL/min pump speed	14 gauge tubing size	Note: Targeting \geq 1.00 mg/L analytical and gravimetric concentration for Trials 10-12.
	TRIAL NO.	10					11							12							Note: Target

PAGE 4

TRIAL TABLE 1 PRELIMINARY AEROSOL GENERATION TRIALS

STUDY NO.: 3596.18 INL/A, U.S. DEPARTMENT OF STATE (33)

Annex 56-A

STUDY NO.: 3596.18 INL/A, U.S. DEPARTMENT OF STATE

TRIAL TABLE 1 PRELIMINARY AEROSOL GENERATION TRIALS

		INPUT	TEST ARTICLE CONCEN-	MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L)	TAINABLE IONS (MG/L)
TRIAL NO.	EQUIPMENT USED	AIR (PSI)	TRATION (%)	GRAVIMETRIC	ANALYTICAL
13	One Multi-Stage 10L Nose-Only Chamber	30	100	0.72	1
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and				
	77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	1.1 mL/min pump speed				
	14 gauge tubing size				

Note: Targeting \geq 1.00 mg/L gravimetric concentration for Trial 13.

107

Annex 56-A

PAGE 5

(35)

SLI Study No. 3596.18

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA TRIAL 2

	Effective					
	Cutoff	Filter We	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	103.2	103.3	0.1	1.4	98.6
2	6.11	102.9	103.7	0.8	11.4	87.1
3	3.70	103.6	105.0	1.4	20.0	67.1
4	2.22	103.4	106.1	2.7	38.6	28.6
5	1.39	103.1	104.5	1.4	20.0	8.6
6	0.79	103.5	104.0	0.5	7.1	1.4
7	0.50	103.8	103.9	0.1	1.4	0.0
Filter	-	103.6	103.6	0.0	0.0	
		Total of Differ	ence Weights:	7.0		

Mass Median Aerodynamic Diameter =

Geometric Standard Deviation =

3.0 microns 1.78

Percentage ≤ 4.0 microns =

70 %

Annex 56-A

(36)

SLI Study No. 3596.18

APPENDIX B

Analytical Chemistry Report

1. SPRAY--CHARLIE ANALYSIS

The analytical method for the analysis of the glyphosate component of Spray--Charlie was validated prior to the analytical chamber concentration analyses performed at Springborn Laboratories, Inc. This method was utilized to determine the inhalation chamber concentration during the Acute Nose-Only Inhalation Toxicity Study.

- 1.1. Experimental System
- 1.1.1. HPLC System

Pump: Injector: Detector: Data System: Precolumn Column: Mobile Phase: Gradient:	Waters 600E System Controller Waters WISP 717 Waters 2487 HP 3396B Integrator Phenomenex, SecurityGuard, C18, 4.0 x 3.0 mm ID Phenomenex, Spherex, C18, 5 μ , 250 x 4.6 mm ID A: 0.05 M HCO ₂ NH ₄ , pH 3.6/5% Acetonitrile B: 100% HPLC Acetonitrile 100% A, hold for 6 minutes; linear change to 25% A/75%
Injection Volume: Flow Rate: Detection:	B over 1 minute; hold for 5 minutes; linear change to 100% A over 1 minute; hold at 100% A for 15 minutes 10 μL 1.0 mL/min 500nm; 0.4000 AUFS
1.1.2. Apparatus	
Balance: Glassware: Filters: Shaker: Oven: Pipet: pH Meter	Mettler AG 245, accuracy of 0.0001 gram Assorted volumetric glassware Gelman, glass fiber, Whatman Puradisc 25PP, 0.45 μm; 0.2 μ Nylon-66 filter Labline, Multi-Wrist Shaker Boekel, Model 107905 Mettler-Toledo 100-1000 μL, 500 – 5000 μL Corning 320

(38)

SLI Study No. 3596.18

1.1.3. Solutions and Reagents

1.1.3.1. Reagents

Water, Fisher, HPLC Grade, Lot # 023349 Acetonitrile, J.T. Baker, HPLC Grade, Lot # M15811 NBD-Chloride, Aldrich, Lot # 10926TO Hydrochloric Acid, A.C.S. Grade, Lot # 012161 Potassium Tetraborate Tetrahydrate, Aldrich, Lot # 15325DI Ammonium Formate, Fisher, Certified Grade, Lot # 990125 Formic Acid, Fisher, Laboratory Grade, Lot # 003630 Methanol, Fisher, HPLC Grade, Lot # 023883

1.1.3.2. Solutions

<u>0.37M Borate Solution:</u> Prepared by dissolving approximately 11.44 g of potassium tetraborate tetrahydrate in 100 mL of HPLC grade water. The resulting solution was mixed thoroughly and was stable for 6 months post-preparation at room temperature.

<u>1.2 N HCI:</u> Prepared by diluting 10 mL of HCl in 90 mL of HPLC grade water. The resulting solution was mixed thoroughly and was stable for 6 months post-preparation at room temperature.

<u>25 mM NBD-CI:</u> Prepared by dissolving approximately 2.5 g of NBD-CI in 500 mL of HPLC grade methanol. The resulting solution was mixed thoroughly and was stable for 6 months post-preparation at room temperature.

<u>Mobile Phase A:</u> Prepared by dissolving approximately 1.57 g of ammonium formate in 950 mL of HPLC grade water. The pH of the resulting solution was adjusted to approximately 3.6 with formic acid. Then, 50 mL of HPLC grade acetonitrile was added. The resulting solution was mixed thoroughly, filtered through a 0.2 μ m Nylon-66 filter, and degassed by helium sparging prior to use. Different volumes were also prepared using the same ratio of components.

Mobile Phase B: 100% HPLC grade acetonitrile used as received.

Diluent: 100% HPLC grade water used as received.

<u>Stock Standard Solution (Trial Work)</u>: Prepared by dissolving 116.8 mg of Spray--Charlie in a 25 mL flask with diluent.

<u>Standard Solutions (Trial Work)</u>: Prepared by serially diluting the stock standard solution with diluent. The final concentrations of the solutions were in the range of approximately 0.47 to 3.3 mg/mL. These solutions were then filtered through Whatman Puradisc 25PP 0.45 μ m filters and diluted with HPLC water at a ratio of 1:10 prior to the derivatization.

<u>Stock Standard Solution (Exposure #1):</u> Prepared by dissolving 100.2 mg of Spray--Charlie in a 25 mL flask with diluent.

<u>Standard Solutions (Exposure #1)</u>: Prepared by serially diluting the stock standard solution with diluent. The final concentrations of the solutions were in the range of approximately 0.4 to 1.6 mg/mL. These solutions were then filtered through Whatman Puradisc 25PP 0.45 μ m filters and diluted with HPLC water at a ratio of 1:10 prior to the derivatization.

<u>Chamber Concentration Solutions:</u> Prepared by placing the weighed glass fiber filter used for gravimetric concentration determination in a capped container with 10 mL of diluent. The solutions were then agitated mechanically for 15 minutes and filtered through Whatman Puradisc 25PP 0.45 μ m filters. The sample solutions were then diluted at a ratio of 1:10 with HPLC water prior to derivatization.

<u>Precolumn Derivatization:</u> In order to analyze the glyphosate component, a precolumn derivatization was performed by adding 1.2 mL of the appropriate control, standard, or sample solution to a labeled scintillation vial. Both 0.8 mL of the borate solution and 2.4 mL of the NBD-Cl solution were added to each vial. The vials were then capped and shaken by hand prior to being heated in an oven at 80° C for 30 minutes. After removal from the oven, the vials were allowed to cool for 10 minutes followed by the addition of 0.9 mL of the HCl solution. After the vials were again shaken by hand, they were allowed to stand for 10 minutes in order for incipient precipitation to occur. These solutions were then transferred to injection vials.

1.2. Analytical Procedures

1.2.1. Standard Curve Analysis

The peak areas of the glyphosate component of each standard were determined, measured, and plotted as a function of concentration to generate a standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 2.

(40)

SLI Study No. 3596.18

1.2.2. Sample Analysis

The peak areas of the glyphosate component of each sample were measured and the concentration was determined by linear fit to the standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 2.

1.3. Results and Conclusions

1.3.1. Analytical Chamber Concentration

The actual sample results of the trial work are shown in Chemistry Table 1. The individual sample results of the analytical chamber analysis are shown in Chemistry Table 2.

M. Gardner Clemons, B.A. Manager of Analytical Chemistry and Pharmacy

<u>mum</u> Date: <u>3/14/200</u>

Chemistry Table 1

Standard Curve and Sample Analysis Values for Trial Work

	Theoretical Conc.		Analytical Chamber
Sample No.	(mg/L)	Peak Area	Conc. (mg/L)
Std 1	0.9344	31125	NA
Std 2	2.804	97258	NA
Std 3	4.672	170507	NA
Std 4	6.540	249444	NA
Trial # 2	NA	179632	4.829
Trial # 3	NA	174130	4.688
Trial # 6	NA	114911	3.169
Trial # 6	NA	105992	2.940
Trial # 9	NA	38278	1.202
Trial # 10	NA	42531	1.311

NA – Not Applicable Correlation coefficient = 0.9992

(42)

SLI Study No. 3596.18

Chemistry Table 2

Standard Curve and Sample Analysis Values for Exposure #1

	Theoretical Conc.		Analytical Chamber
Sample No.	(mg/L)	Peak Area	Conc. (mg/L)
Std 1	0.8016	25636	NA
Std 2	1.603	51542	NA
Std 3	2.404	70695	NA
Std 4	3.206	98772	NA
# 1	NA	81029	2.654
#2	NA	62864	2.044
#3	NA	85271	2.797
#4	NA	87625	2.876
#5	NA	79437	2.601
#6	NA	80738	2.645
#7	NA	80393	2.633
#8	NA	77142	2.524
#9	NA	82645	2.709

NA – Not Applicable Correlation coefficient = 0.998

Annex 56-A

(43)

SLI Study No. 3596.18

APPENDIX C

Individual Aerosol Generation and Chamber Environmental Data

Annex 56-A

(44)

SLI Study No. 3596.18

2.60 mg/L Exposure Level

(45)

SLI Study No. 3596.18

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS CHAMBER ENVIRONMENTAL DATA EXPOSURE: 2.60 MG/L

TIME	TEMPERATURE	RELATIVE HUMIDITY	OXYGEN CONTENT
(MIN.)	(°F)	(%)	(%)
0	69.4	69.3	20.9
30	68.3	68.7	20.9
60	69.3	68.8	20.9
90	69.7	68.4	20.9
120	69.8	68.6	20.9
150	70.3	68.3	20.9
180	70.2	68.5	20.9
210	70.6	69.0	20.9
240	70.7	68.9	20.9

(46)

SLI Study No. 3596.18

			Mean		Time
		Aerosol	Concentration	Interval	Weighted
Sample	Sample	Concentration	Per Interval	Length	Concentration
No.	Time (min.)	(mg/L)	(mg/L)	(min.)	Per Interval
1	0	2.65			
			2.35	30.00	70.35
2	30	2.04			
_			2.42	30.00	72.60
3	60	2.80	_	00.00	12.00
Ũ	00	2.00	2.84	30.00	85.20
4	90	2.88	2.04	00.00	00.20
-	30	2.00	2.74	30.00	82.20
5	120	2.60	2.74	30.00	02.20
5	120	2.60	0.00	20.00	70 75
0	450	0.05	2.63	30.00	78.75
6	150	2.65			
			2.64	30.00	79.20
7	180	2.63			
			2.58	30.00	77.25
8	210	2.52			
			2.62	30.00	78.45
9	240	2.71			
TOTAL				240.00	624.00
TIME WE	EIGHTED MEAN	ANALYTICAL C	ONCENTRATIO	N (MG/L)	2.60

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS TIME WEIGHTED ANALYTICAL CONCENTRATION ANALYTICAL EXPOSURE: 2.60 MG/L

(47)

SLI Study No. 3596.18

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO. A ANALYTICAL EXPOSURE: 2.60 MG/L

	Effective					
	Cutoff	Filter We	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	102.0	102.2	0.2	8.0	92.0
2	6.11	102.2	102.4	0.2	8.0	84.0
3	3.70	102.1	102.5	0.4	16.0	68.0
4	2.22	102.7	103.7	1.0	40.0	28.0
5	1.39	103.5	103.9	0.4	16.0	12.0
6	0.79	103.7	103.9	0.2	8.0	4.0
7	0.50	103.3	103.4	0.1	4.0	0.0
Filter	-	102.7	102.7	0.0	0.0	
		Total of Differ	ence Weights:	2.5		

Mass Median Aerodynamic Diameter =

3.1 microns 2.10

Geometric Standard Deviation = Percentage ≤ 4.0 microns =

63 %

120

Annex 56-A

(48)

SLI Study No. 3596.18

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: B ANALYTICAL EXPOSURE: 2.60 MG/ML

	Effective					
	Cutoff	Filter We	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	101.7	102.2	0.5	10.4	89.6
2	6.11	103.7	104.0	0.3	6.2	83.3
3	3.70	101.9	102.8	0.9	18.7	64.6
4	2.22	103.0	104.4	1.4	29.2	35.4
5	1.39	102.3	103.1	0.8	16.7	18.8
6	0.79	102.0	102.2	0.2	4.2	14.6
7	0.50	102.1	102.7	0.6	12.5	2.1
Filter	-	102.3	102.4	0.1	2.1	
		Total of Differ	ence Weights:	4.8		

Mass Median Aerodynamic Diameter =

121

2.8 microns 2.47 65 %

Geometric Standard Deviation = Percentage ≤ 4.0 microns =

(49)

SLI Study No. 3596.18

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: C ANALYTICAL EXPOSURE: 2.60 MG/L

	Effective					
	Cutoff	Filter We	ights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	102.7	102.9	0.2	4.4	95.6
2	6.11	103.4	103.7	0.3	6.7	88.9
3	3.70	103.2	103.9	0.7	15.6	73.3
4	2.22	102.8	104.3	1.5	33.3	40.0
5	1.39	102.7	103.8	1.1	24.4	15.6
6	0.79	102.9	103.5	0.6	13.3	2.2
7	0.50	103.0	103.1	0.1	2.2	0.0
Filter	-	103.6	103.6	0.0	0.0	
		Total of Diffe	rence Weights:	4.5		

Mass Median Aerodynamic Diameter =

2.8 microns 1.95 71 %

Geometric Standard Deviation =

Percentage \leq 4.0 microns =

122

(50)

SLI Study No. 3596.18

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA

	Effective Cutoff	Cumulative %			
Stage	Diameter	Sample A	Sample B	Sample C	
1	10.00	92.0	89.6	95.6	
2	6.11	84.0	83.3	88.9	
3	3.70	68.0	64.6	73.3	
4	2.22	28.0	35.4	40.0	
5	1.39	12.0	18.8	15.6	
6	0.79	4.0	14.6	2.2	
7	0.50	0.0	2.1	0.0	
					Mean
Mass Median Aerodynamic Diameter		3.1	2.8	2.8	2.9
Geometric Standard Deviation		2.10	2.47	1.95	2.17
Percentage \leq 4.0 microns		63	65	71	66

ANALYTICAL EXPOSURE: 2.60 MG/L

Annex 56-A

(51)

SLI Study No. 3596.18

APPENDIX D

SLI Personnel Responsibilities

Annex 56-A

(52)

SLI Study No. 3596.18

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Malcolm Blair, Ph.D.	Managing Director Emeritus
Rusty E. Rush, M.S., LAT, DABT	Director, Neurotoxicity and Transgenics
Joseph C. Siglin, Ph.D., DABT	General Manager
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Study Supervisor, Acute Toxicology
Kevin V. Weitzel, A.S.	Primary Technician/Inhalation Team Leader
Delores P. Knippen	Supervisor, Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor, Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Cheryl A. Bellamy	Senior Supervisor, Report Writing
Deanna M. Talerico, RQAP-GLP	Senior Supervisor, Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Archivist

A DERMAL SENSITIZATION STUDY IN GUINEA PIGS WITH SPRAY--CHARLIE •MODIFIED BUEHLER DESIGN•

FINAL REPORT

OPPTS Guidelines

870.2600

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

March 14, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.21

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 40

SLI Study No. 3596.21 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent: ______Date: _____

Title

Signature

(3)

FFB 2 7 2003

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792) with the following exception:

The dose preparations used during the range-finding study were not analyzed to confirm test article concentration, stability or homogeneity.

Kimberly L. Bonnette, M.S., LAT Study Director/Author Springborn Laboratories

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 21 Feb 03

(4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase

Date

Protocol Review10/07/02Body Weight12/30/02Data Audit02/18/03Draft Report Review02/18/03Final Report Review03/14/03

Reports to Study Director and Management 02/18/03, 03/14/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Rebecca A. Young

Rebecca A. Young / / / Quality Assurance Team Leader

Anita M. Bosau, RQAP-GLP

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date <u>3/14/03</u>

Date <u>3/14/03</u>

SLI Study No. 3596.21	(5)
	(0)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES
6. SUMMARY
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES11
10. ANALYSIS OF DATA13
11. MAINTENANCE OF RAW DATA AND RECORDS
12. RESULTS
13. CONCLUSION14
14. REPORT REVIEW14
15. REFERENCES

SLI Study No. 3596.21 (6)

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

	Individual Induction Data Individual Challenge Data	
<u>Ap</u>	pendices	
A.	Topical Range-Finding Study	19
Β.	Dermal Grading System	23
C.	Individual Body Weight Data	27
D.	HCA Historical Control Data	30
E.	SLI Personnel Responsibilities	39

6. SUMMARY

The dermal sensitization potential of Spray--Charlie was evaluated in Hartley-derived albino guinea pigs. Ten male and ten female guinea pigs were topically treated with 100% Spray--Charlie, once per week, for three consecutive weeks. Following a two-week rest period, a challenge was performed whereby the 20 test and 10 previously untreated (naive) challenge control guinea pigs were topically treated with 100% Spray--Charlie. Challenge responses in the test animals were compared with those of the challenge control animals.

6.1. Spray--Charlie

Following challenge with 100% Spray--Charlie, dermal reactions in the test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be similar in the test animals as compared with the challenge control animals.

6.2. HCA

Using α -Hexylcinnamaldehyde (HCA) as a positive control, Springborn Laboratories, Inc., Spencerville, Ohio, has completed a study during the past six months which provided historical control data for contact sensitization to this agent utilizing the test system described herein (Modified Buehler Design). Following induction at 5% w/v HCA in ethanol and challenge at levels of 2.5% and 1% w/v HCA in acetone, a contact sensitization response was observed, thereby demonstrating the susceptibility of the test system to this sensitizing agent.

6.3. Conclusion

Based on the results of this study, Spray--Charlie is not considered to be a contact sensitizer in guinea pigs. The results of the HCA historical control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers.

(8)

7. INTRODUCTION

This study was performed to assess the dermal sensitization potential (delayed contact hypersensitivity) of Spray--Charlie in Hartley-derived albino guinea pigs when administered by multiple topical applications. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2600, Skin Sensitization, August 1998. This study was performed at Springborn Laboratories, 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the main sensitization study was initiated with test article administration on December 31, 2002 (day 0) and concluded with final scoring on January 30, 2003.

Prior to initiation of the main sensitization study, a topical range-finding study was conducted in guinea pigs to aid in the selection of dosage levels. The in-life phase of the range-finding study was initiated with test article administration on December 17, 2002 and concluded on December 19, 2002. The experimental methods and results of the range-finding study are included in Appendix A.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
SprayCharlie ^a	S02.003.3596	Amber liquid	12/09/02	None provided
<u>Ingredients:⁵</u> Herbicide: GLY-41 Lot No.: Manufactured 10/20/02				None provided
Surfactant: Cosmo Flux-411F Lot No.: Manufactured 11/29/02				None provided

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

SLI Study No. 3596.21 (9)

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was utilized at 100% (Induction and Challenge). The test article was dispensed fresh on each day of dosing

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hartley-derived albino guinea pigs were received from Hilltop Lab Animals, Inc., Scottdale, PA. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 58-72°F (14-22°C) and 19-71%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The room temperature and relative humidity were recorded a minimum of once daily.

SLI Study No. 3596.21 (10)

8.5.3. Food

PMI Certified Guinea Pig Chow #5026 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 7 weeks of age and weighed 394-464 g on the day prior to Induction 1 dosing. The female animals were approximately 9 weeks of age and weighed 366-420 g on the day prior to Induction 1 dosing.

SLI Study No. 3596.21 (11)

9. EXPERIMENTAL PROCEDURES

9.1. Study Design

This study consisted of a topical range-finding group, a test group and a challenge control group [2]. A rechallenge control group was maintained on this study; however, the rechallenge procedure was not required since the challenge results were definitive.

9.2. Sensitization Study

9.2.1. Preliminary Procedures

On the day prior to each dose administration, the guinea pigs had the hair removed with a small animal clipper. Care was taken to avoid abrading the skin.

9.2.2. Dosing

A dose of 0.3 mL of the test article was placed on a 25 mm Hilltop chamber backed by adhesive tape (occlusive patch). The chambers were then applied to the clipped surface as quickly as possible.

Following chamber application, the trunk of the animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chamber and the animal was returned to its cage.

9.2.2.1. Induction

On the day prior to the first induction dose administration (day -1), all test and control animals were weighed and the hair was removed from the left side of the test animals. On the day following clipping (day 0), chambers were applied as follows:

		Induction	Concentration ^a	Test	No. of Animals	
Group	Material	No.	(%)	Site No.	Male	Female
Test	SprayCharlie	1	100	1	10	10
		2	100	1		
		3	100	1		

^aPooled test article.

The induction procedure was repeated on study day 7 and on study day 14 so that a total of three consecutive induction exposures were made to the test animals.

SLI Study No. 3596.21 (12)

9.2.2.2. Challenge

On the day prior to challenge dose administration, the test and challenge control animals were weighed and the hair was removed from the right side of the animals. On the day following clipping (day 28), chambers were applied as follows:

		Concentration ^a	Test Site	No. of Animals	
Group	Material	(%)	No.	Male	Female
Test	SprayCharlie	100	2	10	10
Challenge Control	SprayCharlie	100	2	5	5

^aPooled test article.

9.2.3. Test Article Removal

Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened in deionized water, followed by dry gauze, to remove test article residue. The animals were then returned to their cages.

9.2.4. Dermal Observations

The test sites were graded for irritation at approximately 24 and 48 hours following chamber application (induction) or chamber removal (challenge) using the Dermal Grading System presented in Appendix B.

9.2.5. Clinical Observations

Any unusual observations and mortality were recorded. The animals were observed for general health/mortality twice daily, once in the morning and once in the afternoon.

9.2.6. Body Weights

Individual body weights were obtained for all sensitization study animals on the day prior to the first induction (day -1) and for the appropriate test and challenge control animals on the day prior to challenge dosing.

9.2.7. Scheduled Euthanasia

All sensitization study animals were euthanized by carbon dioxide inhalation following each animal's final scoring interval. Gross necropsy examinations were not required for these animals.

SLI Study No. 3596.21 (13)

9.3. Protocol Deviations

The animal room temperature and relative humidity ranges [58-72°F (14-22°C) and 19-71%, respectively] exceeded the preferred ranges [63-73°F (17-23°C) and 30-70%, respectively] during this study. These occurrences were considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

The sensitization potential of the test article was based on the dermal responses observed on the test and control animals at challenge. Generally, dermal scores of ≥ 1 in the test animals with scores of 0 to \pm noted in the controls are considered indicative of sensitization. Dermal scores of 1 in both the test and control animals are generally considered equivocal unless a higher dermal response (\geq grade 2) is noted in the test animals. Group mean dermal scores were calculated for challenge.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and electronic records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Topical Range-Finding Study

Individual Topical Range-Finding Data: Appendix A

The results of the range-finding study indicated that a test article concentration of 100% was considered appropriate for induction and challenge since it was the highest possible concentration which was nonirritating.

12.2. Sensitization Study

Individual Data: Tables 1-2

Following challenge with 100% Spray--Charlie, dermal reactions in the test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be similar in the test animals as compared with the challenge control animals.

(14)

12.3. Body Weights

Individual Body Weight Data: Appendix C

The sensitization study animals gained weight during the test period and generally appeared in good health.

12.4. Historical Control

HCA Historical Control Data: Appendix D

Using α -Hexylcinnamaldehyde (HCA) as a positive control, Springborn Laboratories, Inc., Spencerville, Ohio, has completed a study during the past six months which provided historical control data for contact sensitization to this agent utilizing the test system described herein (Modified Buehler Design). Following induction at 5% w/v HCA in ethanol and challenge at levels of 2.5% and 1% w/v HCA in acetone, a contact sensitization response was observed, thereby demonstrating the susceptibility of the test system to this sensitizing agent.

13. CONCLUSION

Based on the results of this study, Spray--Charlie is not considered to be a contact sensitizer in guinea pigs. The results of the HCA historical control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers.

Kimberly L. Bonnette, M.S., LATG Study Director

Date 3

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S. Toxicologist

Date 3/14/03

SLI Study No. 3596.21 (15)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. E. V. Buehler, Delayed Contact Hypersensitivity in the Guinea Pig, Arch. Dermat., <u>91</u>:171-177, 1965.

ш	
Ū	
Ă	
۵.	

TABLE 1 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL INDUCTION DATA (SPRAY--CHARLIE)

STUDY NO.: 3596.21 INL/A, U.S. DEPARTMENT OF STATE

	Animal No./	10	100% ^a	10	100% ^a	100% ^a	% ^a
Group	Sex	24 Hr	48 Hr	24 Hr	48 Hr	24 Hr	48 Hı
Test	G1598/M	0	0	0	0	0	0
	G1599/M	0	0	0	0	0	0
	G1600/M	0	0	0	0	0	0
	G1601/M	0'T	0	0	0	0	0
	G1602/M	0	0	0	0	0	0
	G1603/M	0	0	+1	0	0	0
	G1604/M	0 ¹⁷	0	0	0	0	0
	G1605/M	0	0	0	0	0	0
	G1606/M	0	0	0	0	0	0
	G1607/M	0	0	0	0	0	0
	G1623/F	0 ¹⁷	0	0	0	0	0
	G1624/F	⊑ +	0	0	0	+1	0
	G1625/F	0	0	0	0	0	0
	G1626/F	0	0	0	0	0	0
	G1627/F	0	0	0	0	0	+1
	G1628/F	0	0	0	0	0	0
	G1629/F	0	0	0	0	0	0
	G1630/F	0	0	0	0	0	0
	G1631/F	0	0	0	0	0	0
	G1632/F	0	0	0	0	0	0

141

(16)

Annex 56-A

NEA PIGS PAGE 1	Dermal Scores	100% ^a	48 Hr	0	0	0	0	0	0	0	0	0 ^{IT}	0	0	+1	0	0	0	0	0	0	+1	0	0.1	
TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL CHALLENGE DATA (SPRAYCHARLIE)	Der		24 Hr	0	0	0	0	0	0	0	0	017	0	0	0	0	0	0	0	0	0	0	0	0.0	2.5
AENT OF STATE		Animal No./	Sex	G1598/M	G1599/M	G1600/M	G1601/M	G1602/M	G1603/M	G1604/M	G1605/M	G1606/M	G1607/M	G1623/F	G1624/F	G1625/F	G1626/F	G1627/F	G1628/F	G1629/F	G1630/F	G1631/F	G1632/F	Mean	
STUDY NO.: 3596.21 INL/A, U.S. DEPARTMENT OF STATE			Group	Test																					^a Doolod toot ortiolo

Notes: For the purpose of calculation, $\pm = 0.5$. See Appendix B for definition of codes.

142

(17)

TABLE 2	A DERMAL SENSITIZATION STUDY IN GUINEA	INDIVIDUAL CHALLENGE DATA	(SPRAYCHARLIE)
---------	--	---------------------------	----------------

PAGE 2

JY NO.: 3596.21	, U.S. DEPARTMENT OF STATE
STUDY NC	INL/A, U.S.

A PIGS (SPRAY--CHARLIE)

Animal No./ Group Sex Challenge Control G1608/M G1610/M G1612/M G1612/M G1633/F	10 24 Hr 0 0	100% ⁴ 48 Hr 0 0 0
	24 Hr 0 0 ¹	48 Hr 0 0 0 0
	0 ⁰⁰¹	0000
	т П П	000
G1610/M G1611/M G1612/M G1633/F	0	00
G1611/M G1612/M G1633/F		c
G1612/M G1633/F	0,1	C
G1633/F	0	0
	0	0
G1634/F	0	0
G1635/F	0	0
G1636/F	0	0
G1637/F	0 ^{1T}	0
Mean	0.0	0.0

SLI Study No. 3596.21 (19)

APPENDIX A

Topical Range-Finding Study

SLI Study No. 3596.21 (20)

1. TOPICAL RANGE-FINDING STUDY

This appendix provides the experimental procedures and results of a topical range-finding study in guinea pigs with Spray--Charlie. The procedures for animal husbandry were similar to those described for the main sensitization study animals. The male animals were approximately 8 weeks of age and weighed 420-473 g; the female animals were approximately 9 weeks of age and weighed 385-420 g on the day prior to dosing.

1.1. Method of Test Article Preparation

The test article was utilized at 100% and at 75%, 50% and 25% w/v in deionized water for the range-finding study. The test article was prepared and dispensed fresh on the day of dosing. The dosing preparations were stirred continuously during dosing.

1.2. Dosing

On the day prior to dose administration, four topical range-finding guinea pigs were weighed and the hair removed from the right and left side of the animals with a small animal clipper. Care was taken to avoid abrading the skin during clipping procedures.

On the following day, four concentrations of the test article were prepared and each concentration was applied to the clipped area of each topical range-finding animal as indicated below:

		Concentration	Test Site	Amount	
Group	Material	(%)	No.	Applied	Patch Design ^a
Topical	Spray	100 ^b	1	0.3 mL	25 mm Hilltop Chamber
Range- Finding	Charlie	75 [°]	2	0.3 mL	25 mm Hilltop Chamber
		50 ^c	3	0.3 mL	25 mm Hilltop Chamber
		25 ^c	4	0.3 mL	25 mm Hilltop Chamber

^aOcclusive patch. ^bPooled test article.

[°]The vehicle used was deionized water.

The vehicle used was deionized water.

The chambers were applied to the clipped surface as quickly as possible. The trunk of the animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chambers and the animal was returned to its cage.

SLI Study No. 3596.21 (21)

Approximately six hours after chamber application, the binding materials were removed. The test sites were then wiped with gauze moistened in deionized water, followed by dry gauze, to remove test article residue and the animals returned to their cages.

1.3. Dermal Observations

The test sites of the topical range-finding animals were graded for irritation at approximately 24 and 48 hours following chamber application using the Dermal Grading System in Appendix B.

1.4. Clinical Observations

Any unusual observations and mortality were recorded. The topical range-finding animals were observed for general health/mortality twice daily, once in the morning and once in the afternoon.

1.5. Body Weights

Individual body weights were obtained for the topical range-finding animals on the day prior to dosing.

1.6. Scheduled Euthanasia

Following the 48-hour scoring interval, all topical range-finding animals were euthanized by carbon dioxide inhalation. Gross necropsy examinations were not required for these animals.

1.7. Results

The results of the range-finding study indicated that a test article concentration of 100% was considered appropriate for induction and challenge since it was the highest possible concentration which was nonirritating.

PAGE 1		25% ^{a,b}	48 Hr	0	0
		25	24 Hr	0	0
	ores	50% ^{a,b}	48 Hr	0	0
EA PIGS	Range-Finding Dermal Scores	50	24 Hr	0	0
DY IN GUINE NG DATA IE)	ange-Finding	75% ^{a,b}	48 Hr	0	0
A DERMAL SENSITIZATION STUDY IN GUINEA PIGS TOPICAL RANGE-FINDING DATA (SPRAYCHARLIE)	ä	75	24 Hr	0	0
L SENSITIZ TOPICAL R/ (SPR		100% ^a	48 Hr	0	0
A DERMA		10	24 Hr	0	0
ENT OF STATE		Animal No./Sex	Body Weight (g)	G1471/M 473	G1472/M 420
STUDY NO.: 3596.21 INL/A, U.S. DEPARTMENT OF STATE			Group	Range-Finding	

^bThe vehicle used was deionized water. Note: See Appendix B for definition of codes. ^aPooled test article.

G1540/F 385

G1539/F 420

SLI Study No. 3596.21 (23)

APPENDIX B

Dermal Grading System

DERMAL GRADING SYSTEM

ERYTHEMA AND EDE	EMA OBSERVATIONS	
OBSERVATION	DEFINITION	CODE
Erythema – Grade 0	No reaction	0
Erythema – Grade ±	Slight patchy erythema	±
Erythema – Grade 1	Slight, but confluent or moderate patchy erythema	1
Erythema – Grade 2	Moderate, confluent erythema	2
Erythema – Grade 3	Severe erythema with or without edema	3
Maximized Grade 3	Notable dermal lesions	M – 3 (see below)
		-
Edema – Grade 1	Very slight edema (barely perceptible)	ED-1
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	ED-2
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	ED-3
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	ED-4

(24)

An erythema code was assigned to each test site. An edema code was assigned only if edema was present at the test site. If notable dermal lesion(s) (> grade 1) were present, then the "Maximized Grade 3" was assigned to the test site in place of the erythema score and the type of the notable dermal lesion(s) was noted (e.g., $M-3^{ES-2}$).

(25)

DERMAL GRADING SYSTEM

NOTABLE DERMAL L	ESIONS	
OBSERVATION	CODE	DEFINITION
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.
Eschar – Grade 2	ES-2	> 10% < 25% of test site.
Eschar – Grade 3	ES-3	> 25% < 50% of test site.
Eschar – Grade 4	ES-4	> 50% of test site.
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.
Blanching – Grade 4	BLA-4	> 50% of test site.
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.
Ulceration – Grade 2	U-2	> 10% < 25% of test site.
Ulceration – Grade 3	U-3	> 25% < 50% of test site.
Ulceration – Grade 4	U-4	> 50% of test site.
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (note color of necrosis).
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (Note color of necrosis).
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (Note color of necrosis).
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (Note color of necrosis).

(26)

DERMAL GRADING SYSTEM

ADDITIONAL DERMAL F	FINDINGS	
OBSERVATION	DEFINITION	CODE
Desquamation	Characterized by scaling or flaking of dermal tissue or without denuded areas.	DES
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).	
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3
Superficial Lightening - Grade 4	> 50% of test site	SL-4
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which do not interfere with the scoring of the test site.	IT

SLI Study No. 3596.21 (27)

APPENDIX C

Individual Body Weight Data

ш	
(7)	
ă	
Ē	

A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL BODY WEIGHT DATA

STUDY NO.: 3596.21 INL/A, U.S. DEPARTMENT OF STATE

Body Weight (g)	Day -1 Day 27			405 611																
	Group Animal No./Sex	Test G1598/M	G 1599/M	G 1600/M	G1601/M	G 1602/M	G1603/M	G1604/M	G1605/M	G1606/M	G1607/M	G1623/F	G1624/F	G1625/F	G1626/F	G1627/F	G1628/F	G1629/F	G1630/F	G1631/F

		Body W	Body Weight (g)
Group	Animal No./Sex	Day -1	Day 27
Challenge	G1608/M	398	588
Control	G1609/M	428	628
	G1610/M	410	641
	G1611/M	437	611
	G1612/M	413	643
	G1633/F	392	550
	G1634/F	382	525
	G1635/F	378	497
	G1636/F	404	552
	G1637/F	374	466
	0.461.0 M	414	-
venialieige		-	
Control ^ª	G1614/M	419	1
	G1615/M	402	1
	G1616/M	438	-
	G1617/M	405	-
	G1638/F	390	-
	G1639/F	409	1
	G1640/F	396	-
	G1641/F	407	-
	G1642/F	393	-

PAGE 2

A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL BODY WEIGHT DATA

STUDY NO.: 3596.21 INL/A, U.S. DEPARTMENT OF STATE (29)

SLI Study No. 3596.21 (30)

APPENDIX D

HCA Historical Control Data

SLI Study No. 3596.21 (31)

SPRINGBORN LABORATORIES, INC. MODIFIED BUEHLER HISTORICAL CONTROL DATA USING α-HEXYLCINNAMALDEHYDE (SLI Study No. 999.176)

1. OBJECTIVE

This study was performed to assess the dermal sensitization potential of α -Hexylcinnamaldehyde (HCA) when administered by multiple topical applications. This study may be used to provide information on the ability of the test system to detect potential contact sensitizers and to update the historical positive control of the testing facility. The protocol was signed by the Study Director on September 6, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on September 17, 2002, and concluded with final scoring on October 17, 2002.

2. TEST ARTICLE

The test article was received from the manufacturer, TCI America, and identified as follows:

Supplier's ID	Assigned SLI ID	Physical Description	Receipt Date	SLI Assigned Expiration Dates
HCA Lot No.: GJ01	S02.004.N	Pale yellow liquid	02/11/02	02/11/04

The bulk compound was stored desiccated, protected from light, at room temperature. The manufacturer provided a Certificate of Analysis for the test article which is presented as Attachment 1 of this Appendix.

The HCA was mixed with ethanol or acetone to produce the appropriate concentrations for dose administration. For the sensitization study, the test article concentrations utilized were 5% w/v in ethanol (induction) and 1% and 2.5% w/v in acetone (challenge).

(32)

3. EXPERIMENTAL PROCEDURES [1]

Young adult Hartley-derived albino guinea pigs were received on September 12, 2002, from Hilltop Lab Animals, Inc., Scottdale, PA. The guinea pigs were uniquely identified by ear tag, individually housed in suspended stainless steel cages and received Purina Certified Guinea Pig Chow #5026 and water purified by reverse osmosis ad libitum. The animals were acclimated for a minimum of 5 days prior to experimental initiation. The male guinea pigs were approximately 6 weeks of age and weighed 380-437 g; the female guinea pigs were approximately 8 weeks of age and weighed 320-391 g on the day prior to Induction I dosing.

On the day prior to the first induction dose administration (day -1), the hair was removed from the left side of the twenty test animals. On the following day, 0.3 mL of 5% w/v HCA in ethanol was placed on a Hilltop chamber and applied to the clipped area of each animal's back. The trunk of each animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chamber. Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened with deionized water, followed by dry gauze, to remove test article residue. The test sites were graded for irritation at approximately 24 and 48 hours following chamber application using the Dermal Grading System. The induction procedure was repeated on study day 8 and on study day 15 so that a total of three induction exposures were made to the animals.

On the day prior to challenge dose administration, the hair was removed from the right side of the twenty test and ten challenge control animals. On the following day (day 28), 0.3 mL of 1% and 2.5% w/v HCA in acetone was placed on a 25 mm Hilltop chamber and applied to the clipped area of each animal's back. Wrapping, unwrapping and rinsing procedures were the same as those utilized for the induction phase. The test sites were graded for irritation at approximately 24 and 48 hours following chamber removal.

Any unusual observations and/or mortality were recorded. Body weights were recorded for the test, challenge control and rechallenge control animals on the day prior to first induction (day -1) and for the test and challenge control animals on the day prior to challenge dosing. All sensitization study animals were euthanized by carbon dioxide inhalation following each animal's final scoring interval. Gross necropsy examinations were not required for these animals.

SLI Study No. 3596.21 (33)

Note: The animal room temperature range [64-74°F (18-23°C)] exceeded the preferred range [63-73°F (17-23°C)] during this study. This occurrence was considered to have had no adverse effect on the outcome of this study.

4. RESULTS

Individual Data: Tables 1-2

Following challenge with 2.5% w/v HCA in acetone, dermal scores of 1 were noted in 5/20 test animals at the 24-hour scoring interval and 4/20 test animals at the 48-hour scoring interval. Dermal reactions in the remaining test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be higher in the test animals as compared with the challenge control animals.

Following challenge with 1% w/v HCA in acetone, dermal scores of 1 were noted in 1/20 test animals at the 24-hour scoring interval. Dermal reactions in the remaining test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be higher in the test animals as compared with the challenge control animals.

5. CONCLUSION

The results of this α -Hexylcinnamaldehyde positive control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers. Based on the results of this study, α -Hexylcinnamaldehyde is considered to be a contact sensitizer in guinea pigs.

6. REFERENCE

1. E.V. Buehler, <u>Occlusive Patch Method for Skin Sensitization in Guinea Pigs:</u> <u>The Buehler Method</u>, Fd. Chem. Toxic., Vol. 32, No. 2, pp. 97-101, 1994.

STUDY NO.: 999.176	STUDY NO.: 999.176			INDIVIDUAL INDUCTION DATA (α-HEXYLCINNAMALDEHYDE)	ALDEHYDE)		
	Induction	Induction 1 Dermal Scores	al Scores	Induction 2 [Induction 2 Dermal Scores	Induction 3 Dermal Scores	nal Scores
Animal No./		$5\%^{a}$		Ω.	5% ^a	5% ^a	
Group Sex	x 24 Hr	L	48 Hr	24 Hr	48 Hr	24 Hr	48 Hr
Test G0168/M	8/M ±		+1	M-3 ^{BLA-2, ED-2, ES-2}	M-3 ^{ES-2, BLA-2, ED-1}	1 BLA-1, ED-1	± ^{BLA-1}
G0169/M	9/M ±		+1	+1	+1	1 BLA-1, ED-2	± ^{BLA-1}
G0170/M	0/M 1 ^{BLA-1, ED-1b}		± ^{BLA-1b}	± ^{BLA-1}	± ^{BLA-1}	+1	0
G0171/M	1/M ± ^{BLA-1b}		± ^{BLA-1b}	1 ^{ED-1}	+1	1 ^{ED-1}	+1
G0172/M	2/M 1 ^{BLA-1, ED-1b}		± ^{BLA-1, ED-1b}	1 ^{ED-1, ES-1}	M-3 ^{ES-2, ED-1}	1 ^{BLA-1, ED-2}	1 ^{BLA-1, ED-1}
G0173/M	3/M ±		+1	M-3 ^{BLA-1} , NEC-2(BN),ED-1	M-3 ES-2, NEC-1 (BN), ED-2	2 ^{BLA-1, ED-2}	1 ^{BLA-1, ED-2}
G0174/M	4/M ± [⊤]		0	1 BLA-1, ED-1	1 ^{BLA-1, ED-1}	1 ^{ED-1}	+1
G0175/M	5/M ±		+1	M-3 ^{BLA-2,} NEC-1(BN), ED-1	M-3 ^{BLA-2,} ES-1, NEC-1 (BN), ED-1	2 ^{ED-2}	-
G0176/M	6/M ±		+1	M-3 ^{BLA-1,} ES-3, ED-1	M-3 ^{ES-3,} NEC-1(BN), ED-1	M-3 ^{BLA-2,} NEC-1(BN), ED-2	M-3 ^{BLA-2,} NEC-(BN), ED-2
G0177/M			+1	1 BLA-1, ED-1	1 ^{BLA-1, ED-1}	2 ^{BLA-1,} SL-3, ED-1	±ED-1
G0137/F	; 7/F ± ^{BLA-1, ED-1b}	ED-1b	± ^{BLA-1, ED-1b}	M-3 ^{BLA-1} , NEC-2(BN), ED-2	M-3 ^{ES-2, NEC-1(BN), ED-2}	2 ^{BLA-1, ED-2, SL-4}	2 ^{BLA-1, ED-1}
G0143/F			± ^{BLA-1,b}	M-3 ^{BLA-1} , NEC-2(BN), ED-2	M-3 ^{BLA-1} , NEC-2(BN), ED-2	2 ^{SL-4,} ED-1	1 ^{ED-1}
G0140/F			+1	M-3 ^{BLA-2, ED-2}	M-3 ^{BLA-2,} NEC-1(BN), ED-1	2 ^{ED-2}	+1
G0146/F	.6/F ± [∏]		+1	1 ^{ED-1, IT}	1 ED-1	1 ^{ED-1}	1 ^{ED-1}
G0147/F			0	1 ^{BLA-1, ED-2}	1 ^{BLA-1, ED-1}	2 ^{ED-1}	1 ^{ED-1}
G0154/F	4/F 1 ^{BLA-1, ED-1,IT}		± ^{BLA-1b}	M-3 ^{BLA-1,} ED-1, ES-2	M-3 ^{BLA-1,ES-2, ED-1}	1 ^{ED-1}	1 ^{ED-1}
G0161/F	11/F ±		+1	M-3 ^{BLA-2, ED-2}	M-3 ^{BLA-1} , NEC-2(BN), ED-1	1 ^{ED-1}	-
G0157/F	(7/F 0		0	M-3 ^{BLA-2, ED-2}	M-3 ^{BLA-2, ED-1}	1 ^{ED-1}	+1
G0159/F	:9/F ±		+1	M-3 ^{BLA-2,} NEC-2(BN), ED-1	M-3 ^{BLA-1} , ES-1, NEC-2(BN), ED-1	2 ^{SL-4, ED-1}	1 ^{ED-1}
G0220/F	:0/F ±		+1	1 ^{BLA-1, ED-1}	1 BLA-1, ED-1	2 ^{ED-1}	1 ^{ED-1}

TABLE 1

(34)

159

SLI Study N	o. 3	35	96	.2	1								(3	5))											
PAGE 1		1% ^a	48 Hr	0	0	+1	0	+1	+1	0	+1	0	0	+1	+1	+1	0	0	+1	+1	0	+1	0)	0.3	
PIGS	Scores	10	24 Hr	0	0	+1	0	+1	. 	0	+1	0	+I	÷	+I	+1	⊑+1	0	⊨ +I	+1	0	+1	+	1	0.4	
TABLE 2 FIZATION STUDY IN GUINEA L CHALLENGE DATA CINNAMALDEHYDE)	Dermal	.5% ^a	48 Hr	0	0	+1	0	-	~	0	+1	+1	0	-	+1	+1	0	0	+1	+1	0	-	+	1	0.4	ition of codes.
TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)		2.5	24 Hr	0	0	0	0	-	-	0	-	+1	+1	-	⊑ ₊₁	+1	0	+1	+1	+1	0 ¹¹	-	+	1	0.5	See Appendix B for definition of codes.
		Animal No./	Sex	G0168/M	G0169/M	G0170/M	G0171/M	G0172/M	G0173/M	G0174/M	G0175/M	G0176/M	G0177/M	G0137/F	G0143/F	G0140/F	G0146/F	G0147/F	G0154/F	G0161/F	G0157/F	G0159/F	G0220/F		Mean	ulation, ± = 0.5.
SLI HISTORICAL CONTROL STUDY NO.: 999.176		-	Group	Test																						^a The vehicle was acetone. Notes: For the purpose of calculation, $\pm =$

160

PAGE 2															
ΡĂ			48 Hr	0	0	0	0	0	0	0	0	0	0	0.0	
PIGS	Scores	1% ^a	24 Hr	011	0	0	0	0 ^{1T}	0	0	0	0	0	0.0	
TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)	Dermal Scores	2.5% ^a	48 Hr	0	0	0	0	0	0	0	0	0	0	0.0	
TAF A DERMAL SENSITIZA INDIVIDUAL CF (α-HEYYLCIN		N	24 Hr	0	0	0	0	0	0	0	0	0	0 ¹⁷	0.0	
_		Animal No./	Sex	G0178/M	G0179/M	G0180/M	G0181/M	G0182/M	G0221/F	G0222/F	G0223/F	G0224/F	G0225/F	Mean	definition of codes.
SLI HISTORICAL CONTROL STUDY NO.: 999.176			Group	Challenge	Control										^a The vehicle was acetone. Note: See Appendix B for definition of codes.

SLI Study No. 3596.21 (37)

ATTACHMENT 1

Certificate of Analysis (Provided by the Manufacturer)

CERTIFICATE OF ANALYSIS

(38)

H0685 ALPHA-N-HEXYLCINNAMALDEHYDE Lot# GJ01 CAS# 101-86-0

Appearance:	Yellow clear liquid
SG(20/20):	0.958
n(20/D):	1.550
Assay(GC):	93.6%

9211N. Harborgate St. Portland, OR 97203 Phone: (503)283-1681 (800)423-8616 Fax: (503)283-1987

SLI Study No. 3596.21 (39)

APPENDIX E

SLI Personnel Responsibilities

SLI Study No. 3596.21 (40)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Malcolm Blair, Ph.D.	Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	General Manager
Jason W. Smedley, B.S.	Associate Toxicologist
Pamela S. Smith, ALAT	Study Supervisor, Acute Toxicology
Lyndsay K. Simindinger, A.S.	Primary Technician/Acute Technician II
Delores P. Knippen	Supervisor, Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor, Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Cheryl Bellamy	Senior Supervisor, Report Writing
Deanna M. Talerico, RQAP-GLP	Senior Supervisor, Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Archivist

A PRIMARY EYE IRRITATION STUDY IN RABBITS WITH SPRAY--CHARLIE

FINAL REPORT

OPPTS Guideline

870.2400

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

February 17, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.19

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 24

SLI Study No. 3596.19 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent: ______Date:_____

Title

Signature

FEB 1 4 2003

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

(3)

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

an

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

6 Feb 03 Date

SLI Study No. 3596.19 (4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	<u>Date</u>
Protocol Review	10/07/02
Animal Receipt	11/11/02
Ocular Observations	12/23/02
Data Audit	01/22/03
Draft Report Review	01/22/03
Final Report Review	02/17/03

Reports to Study Director and Management 11/11/02, 01/22/03, 02/17/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

1C. MIL

Jehnifer Ø. McGue Quality Assurance Auditor

Anita M. Bosau, RQAP-GLP / Senior Director, Compliance Assurance

Date <u>2/17/03</u>

Date _

SLI Study No. 3596.19 (5)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS
2. COMPLIANCE STATEMENT3
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS5
5. LIST OF TABLES AND APPENDICES6
6. SUMMARY7
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES10
10. ANALYSIS OF DATA12
11. MAINTENANCE OF RAW DATA AND RECORDS
12. RESULTS
13. CONCLUSION
14. REPORT REVIEW13
15. REFERENCES

SL	Study No. 3596.19	(6)	
5 . <u>Tal</u>	LIST OF TABLES AND APPENDI	CES	
1.	Individual Ocular Irritation Scores.		15
<u>Ap</u>	<u>pendices</u>		
A.	Ocular Grading System		16
В.	Ocular Evaluation Criteria		21
C.	SLI Personnel Responsibilities		23

(7)

6. SUMMARY

The potential irritant and/or corrosive effects of Spray--Charlie were evaluated on the eyes of New Zealand White rabbits. Each of three rabbits received a 0.1 mL dose of the test article in the conjunctival sac of the right eye. The contralateral eye of each animal remained untreated and served as a control. Test and control eyes were examined for signs of irritation for up to seven days following dosing.

Exposure to the test article produced iritis in 3/3 test eyes at the 1-hour scoring interval which resolved completely in all test eyes by the 24-hour scoring interval. Conjunctivitis (redness, swelling and discharge) was noted in 3/3 test eyes at the 1-hour scoring interval. The conjunctival irritation resolved completely in all test eyes by study day 7. An additional ocular finding of slight dulling of normal luster of the cornea was noted in 1/3 test eyes.

Based on the Kay and Calandra, Spray--Charlie is considered to be a moderate irritant to the ocular tissue of the rabbit.

(8)

7. INTRODUCTION

This study was performed to assess the irritant and/or corrosive effects of Spray--Charlie in New Zealand White rabbits when administered by a single ocular dose. This study was intended to provide information on the potential health hazards of the test article with respect to ocular exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2400, Acute Eye Irritation, August 1998. This study was performed at Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on December 23, 2002 (day 0), and concluded with final scoring on December 30, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
SprayCharlie ^a	S02.003.3596	Amber liquid	12/09/02	None provided
Ingredients: ^b Herbicide: GLY-41 Lot No.: Manufactured 10/20/02				None provided
Surfactant: Cosmo Flux-411F Lot No.: Manufactured 11/29/02				None provided

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to the identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc. analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

(9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor at the completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test articles were pooled and administered as received from the Sponsor and dispensed fresh on the day of dosing. The test articles were stirred continuously during dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, New Zealand White rabbits were received from Myrtle's Rabbitry, Thompson Station, TN. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-75°F (22-24°C) and 42-50%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rabbit Chow #5322 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each

(10)

batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. The male animals were approximately 16 weeks of age and weighed 3.2-3.6 kg prior to dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Examination

On day 0 prior to dosing, both eyes of each animal provisionally selected for test use were examined macroscopically for ocular irritation with the aid of an auxiliary light source. In addition, the corneal surface was examined using fluorescein sodium dye. One drop of a fluorescein/physiological saline mixture was gently dropped onto the superior sclera of each eye. Following an

SLI Study No. 3596.19 (11)

approximate 15 second exposure, the eyes were thoroughly rinsed with physiological saline. The corneal surface was then examined for dye retention under a long-wave UV light source. Animals exhibiting ocular irritation, preexisting corneal injury or fluorescein dye retention were not used on study. All animals found to be acceptable for test use were returned to their cages until dosing.

9.2. Dosing

A minimum of one hour after preliminary ocular examination, the test article was instilled as follows:

No. of Animals	
Male	
3	
	3

^aPooled test article.

The test article was instilled into the conjunctival sac of the right eye of each animal after gently pulling the lower lid away from the eye. Following instillation, the eyelids were gently held together for approximately one second in order to limit test article loss and the animal was returned to its cage. The contralateral eye remained untreated to serve as a control.

9.3. Ocular Observations

The eyes were macroscopically examined with the aid of an auxiliary light source for signs of irritation at 1, 24, 48 and 72 hours and up to 7 days after dosing according to the Ocular Grading System presented in Appendix A which is based on Draize [2]. Following macroscopic observations at the 24-hour scoring interval, the fluorescein examination procedure was repeated on all test and control eyes and any residual test article was gently rinsed from the eye at this time (if possible) using physiological saline. If any fluorescein findings were noted at 24 hours, a fluorescein exam was conducted on the affected eyes at each subsequent interval until a negative response was obtained and/or until all corneal opacity had cleared, or as directed by the Study Director.

9.4. Clinical Observations

Any unusual observations and/or mortality were recorded. General health/mortality checks were performed twice daily (in the morning and in the afternoon).

SLI Study No. 3596.19 (12)

9.5. Body Weights

Individual body weights were obtained for each animal prior to dosing on day 0.

9.6. Scheduled Euthanasia

Each animal was euthanized by an intravenous injection of sodium pentobarbital following its final observation interval. Gross necropsy examinations were not required for these animals.

9.7. Protocol Deviations

On two occasions, the temperature of the animal room $[71-75^{\circ}F (22-24^{\circ}C),$ respectively] exceeded the preferred range $[63-73^{\circ}F (17-23^{\circ}C),$ respectively] during this study. These occurrences are considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

For each group, the ocular irritation score for each parameter (i.e., corneal opacity x area, iritis and conjunctival redness + swelling + discharge) was multiplied by the appropriate factor (i.e., corneal injury x 5, iritis x 5, conjunctivitis x 2) and the totals added for each animal/interval. The group mean irritation score was then calculated for each scoring interval based on the number of animals initially dosed in each group. The calculated group mean ocular irritation scores for each interval were used to classify the test article according to the Ocular Evaluation Criteria [3] presented in Appendix B.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

(13)

12. RESULTS

12.1. Ocular Observations

Individual Data: Table 1

Exposure to the test article produced iritis in 3/3 test eyes at the 1-hour scoring interval which resolved completely in all test eyes by the 24-hour scoring interval. Conjunctivitis (redness, swelling and discharge) was noted in 3/3 test eyes at the 1-hour scoring interval. The conjunctival irritation resolved completely in all test eyes by study day 7. An additional ocular finding of slight dulling of normal luster of the cornea was noted in 1/3 test eyes.

No corneal opacity, iritis or conjunctivitis was observed in the control eyes.

13. CONCLUSION

Based on the Kay and Calandra, Spray--Charlie is considered to be a moderate irritant to the ocular tissue of the rabbit.

Kimberly L. Bonnette, M.S., LATG Study Director

Date

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S. Toxicologist

Date o

SLI Study No. 3596.19 (14)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.
- 3. Kay, J.H. and Calandra, J.C., "Interpretation of Eye Irritation Tests", Journal of the Society of Cosmetic Chemists, 13, 281-289, 1962.

Scoring Interval Contract Contract Contract Contract Function 1 Hour 0 0 0 1 KS 2 2 1 10 15 Examination 1 Hour 0 0 0 1 5 2 2 1 10 15 24 Hours 0 0 0 0 0 0 2 12 12 12 14 7 Days 0 0 0 0 0 0 0 14 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Y NO.: US DE	STUDY NO.: 3596.19 INL/A, US DEPARTMENT OF ST	LN	OF ST	STATE			IARY VIDU,)	EYE IF AL OC NO RI	TABLE IRRITATIO CULAR IF RINSE GR	TABLE 1 A PRIMARY EYE IRRITATION STUDY IN RABBITS INDIVIDUAL OCULAR IRRITATION SCORES (NO RINSE GROUP)	IDY IN ION SC	RABBITS ORES	Tat Fva*	Cont	PAGE 1 Control Eye*
Scontop Interval O A Eventsorie Energation Reservation Energation Energation Energation Energation Reministration Energation Energation Reministration Energation 21 Hour 0	Sconting Intervent Scontany Intervent Scontany Intervent Fluctorscin Secondary Scontany Enumenton Scontany Intervent Scontany Intervent Scontany Secondary Fluctorscin Intervent Scontany Intervent Scontany Intervent Scontany Intervent Scontany Secondary Fluctorscin Intervent Scontany Intervent Scontany Intervent Scontany Secondary Fluctorscin Intervent Scontany Secondary Scontany Intervent Scontany Secondary Scontany Secondary				5	20		2		5		200		3			
0 1 5 2 1 10 15 0 0 0 0 2 2 12 12 0 0 0 0 1 1 0 15 0 0 0 1 1 0 4 12 12 12 0 0 0 0 0 0 0 14 12 12 12 12 0 0 0 0 0 0 0 0 14 14 16 15 15 15 15 15 15 15 15 16 15 15 15 15 15 15 15 16 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td>0</td><td></td><td>OxAx5</td><td>_</td><td>lx5</td><td>R</td><td>S</td><td>D</td><td>(R+S+D)2</td><td>Total</td><td>Fluorescein Examination</td><td>Secondary Ocular Findings</td><td>Fluorescein Examination</td><td>Secondary Ocular Findings</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0		OxAx5	_	lx5	R	S	D	(R+S+D)2	Total	Fluorescein Examination	Secondary Ocular Findings	Fluorescein Examination	Secondary Ocular Findings
0 0 0 2 2 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 Hour	0		0	-	5	2	2	-	10	15				
0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		24 Hours			0	0	0	2	2	2	12	12	Ξ		Ξ	
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		48 Hours			0	0	0	7	-	0	9	9				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 15 0 16 17 0 15 1 0 1 0 16 17 0 16 1 10 15 0 0 0 0 0 0 0 0 16		72 Hours			0	0	0	-	-	0	4	4				
0 1 5 2 1 10 15 3DL 0 0 0 0 2 2 1 10 15 0 0 0 0 2 1 0 8 8 8 15 16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7 Days			0	0	0	0	0	0	0	0				
0 0	0 0 0 2 2 0 8 8 [-] 0 0 0 2 1 0 6 6 0 0 0 0 6 6 6 6 0 0 0 0 0 0 10 15 0 1 1 0 4 4 0 0 0 0 10 15 0 1 1 0 4 4 0 0 0 0 0 10 1 1 1 1 10 15 0 0 0 0 0 10 15 1 1 1 1 10 15 15 1 1 1 1 10 15 15 1 1 1 1 1 10 15 1 1		1 Hour	0		0	.	5	2	2	-	10	15		SDL		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 2 1 0 6 6 0 0 0 0 0 6 6 6 0 0 0 0 0 0 1 6 6 0 0 0 0 0 0 15 1 2 2 10 15 0 0 0 0 1 10 10 10 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 4 4 4 0 0 0 0 0 0 0 1 1 10 1 1 10 1 1 1 1 1 24 Hours - 15.00 1 1 10.00 1 1 1 0.00 1 1 1 1 <td></td> <td>24 Hours</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>7</td> <td>2</td> <td>0</td> <td>8</td> <td>8</td> <td>Ξ</td> <td></td> <td>Ξ</td> <td></td>		24 Hours			0	0	0	7	2	0	8	8	Ξ		Ξ	
0 0	0 0 0 0 6 6 0 0 0 0 0 0 0 0 0 1 5 1 2 2 10 0 0 0 0 15 1 2 2 10 15 0 0 0 0 1 10 10 16 1 0 0 0 1 1 0 4 4 0 0 0 0 0 0 10 1 1 1 0 1 1 10 1 1 1 0 0 0 0 1 1 1 1 1 10 1 1 1 1 1 1 1 2 1 1 1 1 0 1 1 1 1 1 1 <td< td=""><td></td><td>48 Hours</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>7</td><td>-</td><td>0</td><td>9</td><td>9</td><td></td><td></td><td></td><td></td></td<>		48 Hours			0	0	0	7	-	0	9	9				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 1 5 1 2 2 10 15 0 0 0 0 0 10 15 0 0 0 0 4 10 10 1 0 0 0 1 1 0 4 4 0 0 0 0 0 0 0 0 1 1 1 1 0 4 4 4 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td>72 Hours</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>7</td> <td>-</td> <td>0</td> <td>9</td> <td>9</td> <td></td> <td></td> <td></td> <td></td>		72 Hours			0	0	0	7	-	0	9	9				
0 1 5 1 2 2 10 15 0 0 0 2 2 1 10 15 0 0 0 2 2 1 10 16 0 0 0 6 6 6 6 0 0 1 1 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 5 1 2 2 10 15 0 0 0 2 2 1 10 10 1-1 0 0 0 1 1 0 6 6 6 0 0 0 1 1 0 4 4 0 0 0 0 0 0 0 1 1 1 0 4 4 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 24 Hours - 16.00 24 Hours - 10.00 24 Hours - 4.67 7 1 2 0.00		7 Days			0	0	0	0	0	0	0	0				
0 0 2 2 1 10 10 0 0 0 2 1 10 16 1 0 0 0 2 1 1 6 6 6 0 0 0 1 1 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 2 1 10 10 1 0 0 0 0 6 6 6 0 0 0 1 1 0 4 0 0 0 0 0 0 1 1 1 1 0 4 4 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 7 1 1 0		1 Hour	0		0	~	5	-	2	2	10	15				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 1 0 6 0 0 0 1 1 0 4 0 0 0 0 0 0 0 1 Mean Ocular Scores 1 Hour - 15.00 24 Hours - 10.00 48 Hours - 6.00 72 Hours - 6.00 72 Hours - 0.00		24 Hours			0	0	0	2	2	-	10	10	Ξ		Ξ	
	0 0 0 0 1 1 0 4 Mean Ocular Scores 1 Hour - 15.00 24 Hours - 15.00 48 Hours - 6.00 72 Hours - 4.67 7 Days - 0.00		48 Hours			0	0	0	7	-	0	9	9				
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		72 Hours			0	0	0	~	-	0	4	4				
A for definition of codes.	Mean Ocular Sco 1 Hour - 24 Hours - 48 Hours - 7 Days -		7 Days	0		0	0	0	0	0	0	0	0				
	n Ocular Sco - - - -	1.2	A for definitior	n of c	codes.												
							I		-	Hour		Ì	00				
									24	Hours			00				
									48	Hours			00				
	Days -								72	Hours			67				
										Days			00				

Moderate Irritant

(15)

(16)

APPENDIX A

Ocular Grading System

SLI Study No. 3596.19 (17)

OCULAR GRADING SYSTEM

(O) CORNEAL OPACITY—DEGREE OF DENSITY (AREA MOST DENSE TAKEN FOR READING)	
OBSERVATION	CODE
No ulceration or opacity	0
Scattered or diffuse areas of opacity (other than slight dulling of normal luster), details of iris clearly visible	1*
Easily discernible translucent area, details of iris slightly obscured	2*
Nacreous (opalescent) area, no details of iris visible, size of pupil barely discernible	3*
Opaque cornea, iris not discernible through opacity	4*

(A) AREA OF CORNEA INVOLVED (TOTAL AREA EXHIBITING ANY OPACITY, REGARDLESS OF DEGREE)	
OBSERVATION	CODE
No ulceration or opacity	0
One quarter (or less) but not zero	1
Greater than one quarter, but less than half	2
Greater than half, but less than three quarters	3
Greater than three quarters, up to whole area	4

Cornea Score = O x A x 5

Total Maximum = 80

(I) IRITIS	
OBSERVATION	CODE
Normal	0
Markedly deepened rugae (folds above normal), congestion, swelling, moderate circumcorneal hyperemia or injection, any or all of these or combination of any thereof, iris is still reacting to light (sluggish reaction is positive)	1*
No reaction to light, hemorrhage, gross destruction (any or all of these)	2*

Iris Score = I x 5

Total Maximum = 10

*Starred figures indicate positive effect.

OCULAR GRADING SYSTEM

(R) CONJUNCTIVAL REDNESS (REFERS TO PALPEBRAL AND BULBAR CONJUNCTIVAE EXCLUDING CORNEA AND IF	RIS)
OBSERVATION	CODE
Blood vessels normal	0
Some blood vessels definitely hyperemic (injected) above normal (slight erythema)	1
Diffuse, crimson color, individual vessels not easily discernible (moderate erythema)	2*
Diffuse beefy red (marked erythema)	3*

(18)

(S) CONJUNCTIVAL SWELLING (LIDS AND/OR NICTITATING MEMBRANE)	
OBSERVATION	CODE
No swelling	0
Any swelling above normal (includes nictitating membrane, slightly swollen)	1
Obvious swelling with partial eversion of lids	2*
Swelling with lids about half closed	3*
Swelling with lids more than half closed	4*

(D) CONJUNCTIVAL DISCHARGE	
OBSERVATION	CODE
No discharge	0
Any amount different from normal (does not include small amounts observed in inner canthus of normal animals)	1
Discharge with moistening of the lids and hairs just adjacent to lids	2
Discharge with moistening of the lids and hairs and considerable area around the eye	3

Conjunctival Score = (R + S + D) x 2

Total Maximum = 20

*Starred figures indicate positive effect.

OCULAR GRADING SYSTEM

CORNEAL NEOVASCU	LARIZAT	ION
OBSERVATION	CODE	DEFINITION
Neovascularization – Very Slight	VAS-1	Total area of vascularized corneal tissue is < 10% of corneal surface
Neovascularization – Mild	VAS-2	Total area of vascularized corneal tissue is > 10% but < 25% of corneal surface
Neovascularization – Moderate	VAS-3	Total area of vascularized corneal tissue is > 25% but < 50% of corneal surface
Neovascularization – Severe	VAS-4	Total area of vascularized corneal tissue is > 50% of corneal surface

(19)

SECONDARY OCULAR	FINDING	SS
OBSERVATION	CODE	DEFINITION
Sloughing of the corneal epithelium	SCE	Corneal epithelial tissue is observed to be peeling off the corneal surface.
Corneal bulging	CB	The entire corneal surface appears to be protruding outward further than normal.
Slight dulling of normal luster of the cornea	SDL	The normal shiny surface of the cornea has a slightly dulled appearance.
Raised area on the corneal surface	RAC	A defined area on the corneal surface that is raised above the rest of the cornea. This area is generally associated with neovascularization and has an off-white to yellow color.
Corneal edema	CE	The cornea has a swollen appearance.
Test article present in eye	TAE	Apparent residual test article is observed on the eye or in the conjunctival sac/inner canthus.
Observation confirmed by slit lamp	OCS	A slit lamp examination was performed to confirm the initial observation.
Corneal mineralization	СМ	Small white or off-white crystals that are observed in the corneal tissue.

(20)

OCULAR GRADING SYSTEM

FLUORESCEIN EXAMINATION OF CORNEA	
OBSERVATION	CODE
Fluorescein Dye Retention Fluorescein dye retention associated with the area of corneal opacity Fluorescein dye retention is not associated with any other finding	FAO FNF
Negative Results No fluorescein retention is observed	(-)
Secondary Ocular Findings Superficial mechanical abrasion to the cornea observed during the fluorescein examination period Fine stippling on the cornea observed during the fluorescein examination procedure	MI ST

POST-DOSE CLINICAL OBSERVATIONS	
OBSERVATION	CODE
Animal vocalized following dosing	VOC
Animal excessively pawed test eye following dosing	PAW
Animal exhibited excessive hyperactivity following dosing	HYP
Animal exhibited excessive head tilt following dosing	HT
Animal exhibited excessive squinting of test eye following dosing	SQ

Annex 56-A

SLI Study No. 3596.19

(21)

APPENDIX B

Ocular Evaluation Criteria

(22)

Maximum Mean Score (Days 0-3)	Maximum Mean Score	Persistence of Individual Scores	Descriptive Rating and Cl	lass	
	24 hours = 0		Non-Irritating	1	
0.00 – 0.49	24 hours > 0		Practically Non-irritating	2	
0.50 0.40	24 hours = 0		Non-Irritating	1	
0.50 – 2.49	24 hours > 0		Practically Non-irritating	2	
2.50 - 14.99	48 hours = 0		Slight Irritant	3	
2.50 - 14.99	48 hours > 0		Mild Irritant	4	
15.00 – 24.99	72 hours = 0		Mild Irritant	4	
15.00 - 24.99	72 hours > 0		Moderate Irritant	5	
		> half of day 7 scores < 10	Moderate Irritant	5	
05.00 40.00	7 day <u>< 2</u> 0	> half of day 7 scores > 10, but no score > 20	Moderate Irritant	5	
25.00 – 49.99		> half of day 7 scores > 10, and any score > 20	Severe Irritant	6	
	7 day > 20		Severe Irritant	6	
		> half of day 7 scores <u><</u> 30	Severe Irritant	6	
50.00 – 79.99	7 day <u><</u> 40	> half of day 7 scores > 30, but no score > 60	Severe Irritant	6	
50.00 - 79.99		> half of day 7 scores > 30, and any score > 60	Very Severe Irritant	7	
	7 day > 40		Very Severe Irritant	7	
		> half of day 7 scores < 60	Very Severe Irritant	7	
80.00 – 99.99	80.00 00.00	7 day <u><</u> 80	> half of day 7 scores > 60, but no score > 100	Very Severe Irritant	7
		> half of day 7 scores > 60, and any score > 100	Extremely Severe Irritant	8	
	7 day > 80		Extremely Severe Irritant	8	
100.00 - 110.00	7 day <u><</u> 80		Very Severe Irritant	7	
100.00 - 110.00	7 day > 80		Extremely Severe Irritant	8	

OCULAR EVALUATION CRITERIA

Annex 56-A

SLI Study No. 3596.19

(23)

APPENDIX C

SLI Personnel Responsibilities

(24)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Malcolm Blair, Ph.D.	Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	General Manager
Jason W. Smedely, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Study Supervisor, Acute Toxicology
Lyndsay K. Simindinger, A.S.	Primary Technician/Acute Technician II
Delores P. Knippen	Supervisor, Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor, Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Cheryl Bellamy	Senior Supervisor, Report Writing
Deanna M. Talerico, RQAP-GLP	Senior Supervisor, Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Archivist

A PRIMARY SKIN IRRITATION STUDY IN RABBITS WITH SPRAY--CHARLIE

FINAL REPORT

OPPTS Guideline

870.2500

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

February 17, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.20

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 23

SLI Study No. 3596.20 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent:	Date	

Title

Signature

(3)

FER 1 4 2003

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date 义

7 Jel 03 Date

(4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	<u>Date</u>
Protocol Review	10/07/02
Animal Receipt	12/02/02
Dose Preparation	12/20/02
Data Audit	01/21/03
Draft Report Review	01/21/03
Final Report Review	02/17/03

Reports to Study Director and Management 12/02/02, 01/21/03, 02/17/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Rébecca A. Young / / / Quality Assurance Team Leader

Af⁄iita M. B⁄ośau, RQAP-GLP Senior Director, Compliance Assurance

Date _

Date <u>2/17</u>/03

SLI Study No. 3596.20 (5)
4. TABLE OF CONTENTS
1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES
6. SUMMARY7
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES10
10. ANALYSIS OF DATA12
11. MAINTENANCE OF RAW DATA AND RECORDS
12. RESULTS
13. CONCLUSION12
14. REPORT REVIEW13
15. REFERENCES

SLI Study No. 3596.20	(6)
-----------------------	-----

5. LIST OF TABLES AND APPENDICES

<u>Table</u>

1.	Individual Dermal Irritation Scores	15
<u>Ap</u>	pendices	
A.	Macroscopic Dermal Grading System	16
Β.	Dermal Evaluation Criteria	20
C.	SLI Personnel Responsibilities	22

6. SUMMARY

The potential irritant and/or corrosive effects of Spray--Charlie were evaluated on the skin of New Zealand White rabbits. Each of three rabbits received a 0.5 mL dose of the test article as a single dermal application. The dose was held in contact with the skin under a semi-occlusive binder for an exposure period of four hours. Following the exposure period, the binder was removed and the remaining test article was wiped from the skin using gauze moistened with deionized water followed by dry gauze. Test sites were subsequently examined and scored for dermal irritation for up to 72 hours following patch application.

Exposure to the test article produced very slight erythema on 3/3 test sites at the 1-hour scoring interval. The dermal irritation resolved completely on all test sites by the 24-hour scoring interval.

Under the conditions of the test, Spray--Charlie is considered to be a slight irritant to the skin of the rabbit. The calculated Primary Irritation Index for the test article was 0.25.

(8)

7. INTRODUCTION

This study was performed to assess the potential irritant and/or corrosive effects of Spray--Charlie in New Zealand White rabbits when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2500, Acute Dermal Irritation, August 1998. This study was performed at Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on December 20, 2003 (day 0) and concluded with final scoring on December 23, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
SprayCharlie ^a	S02.003.3596	Amber liquid	12/09/02	None provided
Ingredients: ^b Herbicide: GLY-41 Lot No.: Manufactured 10/20/02				None provided
Surfactant: Cosmo Flux-411F Lot No.: Manufactured 11/29/02				None provided

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc. analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

SLI Study No. 3596.20 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article sample (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test articles were pooled and administered as received from the Sponsor. The test article was dispensed fresh on the day of dosing and stirred continuously during dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, New Zealand White rabbits were received from Myrtle's Rabbitry, Thompson Station, TN. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-72°F (22°C) and 46-55%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rabbit Chow #5322 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and

SLI Study No. 3596.20 (10)

certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) were provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animal was approximately 13 weeks of age and weighed 2.7 kg prior to dosing. The female animals were approximately 13 weeks of age and weighed 2.5-2.8 kg prior to dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

On day -1, the animals chosen for use on the primary skin irritation study had the fur removed from the dorsal area of the trunk using an animal clipper. Care was taken to avoid abrading the skin during the clipping procedure.

SLI Study No. 3596.20 (11)

9.2. Dosing

On the following day (day 0), the test article was applied to a small area of intact skin on each test animal (approximately 1 inch x 1 inch) as indicated below:

Concentration	Amount		No. of	of Animals	
(%)	Applied	Patch Design	Male	Female	
100 ^a	0.5 mL	~1" x 1" square 4-ply gauze patch	1	2	

^aPooled test article.

The test article was administered under the gauze patch. The gauze patch was held in contact with the skin at the cut edges with a nonirritating tape. Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area (semi-occlusive binding). The elastic wrap was then further secured with adhesive tape around the trunk at the cranial and caudal ends. After dosing, collars were placed on each animal and remained in place until removal on day 3. After a four-hour exposure period, the binding materials were removed from each animal and the corners of the test site delineated using a marker. Residual test article was removed using gauze moistened with deionized water, followed by dry gauze.

9.3. Dermal Observations

Animals were examined for signs of erythema and edema and the responses scored at 1 hour after patch removal and 24, 48 and 72 hours after patch application according to the Macroscopic Dermal Grading System presented in Appendix A which is based on Draize [2].

9.4. Clinical Observations

Any unusual observations and/or mortality were recorded. General health/mortality checks were performed twice daily (in the morning and in the afternoon).

9.5. Body Weights

Individual body weights were obtained for each animal prior to dosing on day 0.

9.6. Scheduled Euthanasia

Each animal was euthanized by an intravenous injection of sodium pentobarbital following its final scoring interval. Gross necropsy examinations were not required for these animals.

(12)

9.7. Protocol Deviations

No protocol deviations occurred during this study.

10. ANALYSIS OF DATA

The 1-, 24-, 48- and 72-hour erythema and edema scores for all animals were added and the total divided by the number of test sites x 4. The calculated Primary Irritation Index (P.I.I.) was classified according to the Dermal Evaluation Criteria [3] presented in Appendix B.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and electronic encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Dermal Observations

Individual Data: Table 1

Exposure to the test article produced very slight erythema on 3/3 test sites at the 1-hour scoring interval. The dermal irritation resolved completely on all test sites by the 24-hour scoring interval.

13. CONCLUSION

Under the conditions of the test, Spray--Charlie is considered to be a slight irritant to the skin of the rabbit. The calculated Primary Irritation Index for the test article was 0.25.

Kimberly L\ Bonnette, M.S., LATG Study Director

Date 2

(13)

14. REPORT REVIEW

nuch

Dawn D. Rodabaugh, B.S. Toxicologist

Date 2 17/03

SLI Study No. 3596.20 (14)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.
- 3. Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation: Human and Domestic Animals-Addendum 3 on Data Reporting, US EPA, 1988.

STUDY NO. 3596.20 A PRIMARY SKIN IRRITATION STUDY IN RABBITS INL/A, US DEPARTMENT OF STATE INDIVIDUAL DERMAL IRRITATION SCORES (SPRAYCHARLIE)	Scoring Interval Erythema Edema	-/1/F 1 Hour 1 0 11 314 24 Hours 0 0	48 Hours 0 0 0	72 Hours 0 0	.72/F 1 Hour 1 0 IT	494 24 Hours 0 0 IT	48 Hours 0 0 IT 48 Hours 0 0	72 Hours 0 0	.74/F 1 Hour 1 0	723 24 Hours 0 0	48 Hours 0 0 0	72 Hours 0 0	Note: See Appendix A for definition of codes.	
STUDY NO. 3596.20 INL/A, US DEPARTM	Animal No./Sex Body Weight (kg)	K3471/F 2.814			R3472/F	2.494			R3474/F	2.723			Note: See Appendiy	

0.25 = Slight Irritant

(15)

204

SLI Study No. 3596.20 (16)

APPENDIX A

Macroscopic Dermal Grading System

SLI Study No. 3596.20 (17)

MACROSCOPIC DERMAL GRADING SYSTEM

ERYTHEMA AND EDEMA OBSERVATIONS					
OBSERVATION	DEFINITION	CODE			
Erythema – Grade 0	No erythema	0			
Erythema – Grade 1	Very slight erythema (barely perceptible)	1			
Erythema – Grade 2	Well-defined erythema	2			
Erythema – Grade 3	Moderate to severe erythema	3			
Erythema – Grade 4	Grade 4 Severe erythema (beet redness)				
Maximized Grade 4 Notable dermal lesions (see below)		M – 4 (see below)			
Edema – Grade 0	No edema	0			
Edema – Grade 1	Very slight edema (barely perceptible)	1			
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	2			
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	3			
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	4			

NOTE: Each animal was assigned an erythema and edema score. The most severely affected area within the test site was graded. If eschar, blanching, ulceration and/or necrosis greater than grade 1 was observed, then the "Maximized Grade 4" was assigned to the test site in place of the erythema score and the type of notable dermal lesion(s) (e.g., eschar - grade 2, blanching - grade 3, ulceration - grade 4, etc.) was noted. The presence of any other dermal changes (e.g., desquamation, fissuring, eschar exfoliation, etc.) was also recorded.

SLI Study No. 3596.20 (18)

MACROSCOPIC DERMAL GRADING SYSTEM

NOTABLE DERMAL L	ESIONS	
OBSERVATION	CODE	DEFINITION
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.
Eschar – Grade 2	ES-2	> 10% < 25% of test site.
Eschar – Grade 3	ES-3	> 25% < 50% of test site.
Eschar – Grade 4	ES-4	> 50% of test site.
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.
Blanching – Grade 4	BLA-4	> 50% of test site.
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.
Ulceration – Grade 2	U-2	> 10% < 25% of test site.
Ulceration – Grade 3	U-3	> 25% < 50% of test site.
Ulceration – Grade 4	U-4	> 50% of test site.
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (note color of necrosis).
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (note color of necrosis).
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (note color of necrosis).
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (note color of necrosis).

(19)

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL DERMAL FINDINGS					
OBSERVATION	DEFINITION	CODE			
Desquamation	Characterized by scaling or flaking of dermal tissue or without denuded areas.	DES			
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS			
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF			
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)			
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB			
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).				
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1			
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2			
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3			
Superficial Lightening - Grade 4	> 50% of test site	SL-4			
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which does not interfere with the scoring of the test site.	IT			

SLI Study No. 3596.20 (20)

APPENDIX B

Dermal Evaluation Criteria

(21)

DERMAL EVALUATION CRITERIA	
Primary Irritation Index (P.I.I.)	Irritation Rating
0.00	Nonirritant
0.01 - 1.99	Slight Irritant
2.00 - 5.00	Moderate Irritant
5.01 - 8.00	Severe Irritant

(22)

APPENDIX C

SLI Personnel Responsibilities

SLI Study No. 3596.20 (23)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Malcolm Blair, Ph.D.	Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	General Manager
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Primary Technician/Study Supervisor, Acute Toxicology
Delores P. Knippen	Supervisor, Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor, Pathology
Anita M. Bosau, RQAP-GLP	
	Senior Director, Compliance Assurance
Cheryl Bellamy	Senior Director, Compliance Assurance Senior Supervisor, Report Writing
Cheryl Bellamy Deanna M. Talerico, RQAP-GLP	
	Senior Supervisor, Report Writing

Report Amendment No. 1

PURITY ANALYSIS FOR GLYPHOSATE OF SPRAY--CHARLIE (ACTIVE INGREDIENT)

FINAL REPORT

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

March 21, 2003

Amended Study Completed on

March 27, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Laboratories, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.15

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 30

SLI Study No. 3596.15 (4) Report

Report Amendment No. 1

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	<u>Date</u>
Protocol Review Mobile Phase and Standard Preparations Data Audit Draft Report Review Protocol Amendment Review Final Report Review Amended Final Report Review	10/09/02 12/12/02 03/17/03 03/17/03 03/20/03 03/21/03 03/27/03

Reports to Study Director and Management 03/17/03, 03/21/03, 03/27/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Atu ella

Rebecca A. Young / / Quality Assurance Team Leader

Maleria

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date _____

Date_ 3/27/03

Page		
No.	Revision	Reason for Change
4	Mobile Phase and Standard Preparations date should	To correct a typographical
	12/12/02 instead of 12/12/03.	error.
17	Replace the entire table	Incorrect table.

Kimberly L. Bonnette, M.S., LATG Study Director

Date:

(17)

Report Amendment No. 1

Chemistry Table 2 Sample Analysis Value and % Error Based on Theoretical Value Before Use Purity Analysis

			Average %	Average %	Overall			
		%	Glyphosate	Glyphosate	Average %		Average	Average
Test Mix	Sample	Glyphosate	(a.e.) by	(a.e.) by	Glycosate		% Error by	% Error by
No.	Туре	(a.e.)	Sample Type	Test Mix	(a.e.)	% Error	Sample Type	Test Mix
1	Тор	18.70			16.53	26.4		
1	Top*	16.80	17.75			13.5	19.9	
1	Middle	16.66				12.6		
1	Middle*	15.41	16.04			4.1	8.3	
1	Bottom	16.98				14.7		
1	Bottom*	16.98	16.98	16.92		14.7	14.7	14.3
2	Тор	16.48				11.4		
2	Top*	15.79	16.14			6.7	9.0	
2	Middle	16.36				10.5		
2	Middle*	14.69	15.53			0.7	5.6	
2	Bottom	17.33				17.1		
2	Bottom*	17.26	17.30	16.32		16.6	16.9	10.5
3	Тор	17.66				19.3		
3	Top*	16.49	17.08			11.4	15.4	
3	Middle	16.98				14.7		
3	Middle*	18.45	17.72			24.7	19.7	
3	Bottom	18.88				27.6		
3	Bottom*	19.24	19.06	17.95		30.0	28.8	21.3
4	Тор	13.98				5.5		
4	Top*	13.52	13.75			8.6	7.1	
4	Middle	15.75				6.4		
4	Middle*	15.21	15.48			2.8	4.6	
4	Bottom	15.79				6.7		
4	Bottom*	17.81	16.80	15.34		20.3	13.5	8.4
5	Тор	15.72				6.2		
5	Top*	15.77	15.75			6.6	6.4	
5	Middle	16.31				10.2		
5	Middle*	16.13	16.22			9.0	9.6	
5	Bottom	15.46				4.5		
5	Bottom*	17.40	16.43	16.13		17.6	11.0	9.0
	* = Dupli	cate						

* = Duplicate

Report Amendment No. 1

AN ACUTE DERMAL TOXICITY STUDY IN RATS WITH SPRAY--CHARLIE

AMENDED FINAL REPORT

OPPTS Guideline

870.1200

Author

Kimberly L. Bonnette, M.S., LATG

Original Study Completion Date

February 20, 2003

Amended Study Completion Date

March 17, 2003

Performing Laboratory

Springborn Laboratories (SLI), a division of Charles River Company, Inc. 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.17

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 29

(4)

Report Amendment No. 1

4. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

<u>Phase</u>	Date
Protocol Review Dosing Data Audit Draft Report Review Final Report Review Amended Report Review	10/07/02 12/19/02 01/23/03 01/23/03 02/20/03 03/17/03

Reports to Study Director and Management 01/23/03, 02/20/03, 03/17/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

uniter D. Ma

Jénnifer Ø. McGue Quality Assurance Auditor

Anita M. Bosau, RQAP-GLP

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date	3/17/03

Date <u>3/17/03</u>

Page No.	Revision	Reason For Change
8	8.1. Test Article. In the table, change the lot number for Surfactant: Cosmo Flux-411F from "Lot No.: Manufactured 11/20/02" to "Lot No.: Manufactured 11/29/02".	

Kimberly L. Bonnette, M.S., LATG Director, Acute Toxicology

Date

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Charlie in Sprague Dawley rats when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1200, Acute Dermal Toxicity, August 1998. This study was performed at Springborn Laboratories (SLI), 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on October 9, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on December 19, 2002 (day 0), and concluded with necropsy on January 2, 2003.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Charlie ^a	S02.003.3596	Amber liquid	12/09/02	None provided
Ingredients: ^b Herbicide: GLY-41 Lot No.: Manufactured 10/20/02				None provided
Surfactant: Cosmo Flux-411F Lot No.: Manufactured 11/29/02				None provided

^aSample pooled at SLI from five different mixes of Spray--Charlie (top/middle/bottom). ^bIngredients used in the five Spray--Charlie mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.15.

Page 1 of 2

PURITY ANALYSIS FOR GLYPHOSATE OF SPRAY--CHARLIE (ACTIVE INGREDIENT)

PROTOCOL AMENDMENT NO. 1

1) PART TO BE CHANGED/REVISED (EFFECTIVE OCTOBER 21, 2002):

4.3.2. SLI Identification Number

CHANGE/REVISION:

Replace this section with the following:

R02.002.3596

REASON FOR CHANGE/REVISION:

To correct the SLI Identification Number for the reference standard.

2) PART TO BE CHANGED/REVISED (EFFECTIVE OCTOBER 21, 2002):

4.3.3. Lot Number

CHANGE/REVISION:

Replace this section with the following:

42K3650

REASON FOR CHANGE/REVISION:

To correct the lot number for the reference standard.

Page 2 of 2

PURITY ANALYSIS FOR GLYPHOSATE OF SPRAY -- CHARLIE (ACTIVE INGREDIENT)

PROTOCOL AMENDMENT NO. 1

Date:

Kimberly L. Bonnette, M.S., LATG Study Director (SLI)

Aberra 4. 402m Quality Assurance Unit (SLI)

201

Rogers Woolfolk Sponsor's Representative

Date: <u>3/21/03</u>

Date: 21 MARCH-03

Annex 56-B

Six Acute Toxicity Studies with Spray-Alpha, SLI Study N° 3596.3, 3 September 2002

(United States Embassy in Bogotá, 2011)

AN ACUTE DERMAL TOXICITY STUDY IN RATS WITH SPRAY--ALPHA

FINAL REPORT

OPPTS Guideline

870.1200

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.3

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 30

SLI Study No. 3596.3 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: Date _____ Date _____

Title

Signature

(3)

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Avlation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 29/02

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review Dermal Observations Data Audit Draft Report Review Protocol Amendment Review Final Report Review	03/31/02 06/26/02 08/22/02 08/22/02 08/28/02 09/03/02

Reports to Study Director and Management

08/22/02, 09/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Junifer D.Mc Des

Jennifer D. McGue **Quality Assurance Auditor**

Jaline

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 9302

Date 9/3/02

(4)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT	4
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	6
6. SUMMARY	7
7. INTRODUCTION	8
8. MATERIALS AND METHODS	8
9. EXPERIMENTAL PROCEDURES	10
10. ANALYSIS OF DATA	12
11. MAINTENANCE OF RAW DATA AND RECORDS	12
12. RESULTS	13
13. CONCLUSION	14
14. REPORT REVIEW	14
15. REFERENCES	15

(5)

SLI Study No. 3596.3 (6)

5. LIST OF TABLES AND APPENDICES

Tables

1.	Individual Clinical Observations	16
2.	Individual Body Weights	20
	Individual Gross Necropsy Observations	

Appendices

Α.	Macroscopic Dermal Grading System	24
В.	SLI Personnel Responsibilities	29

(7)

6. SUMMARY

The single-dose dermal toxicity of Spray--Alpha was evaluated in Sprague Dawley rats. A limit test was performed in which one group of five male and five female rats received a single dermal administration of the test article at a dose of 5000 mg/kg body weight. Following dosing, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the limit test. Clinical abnormalities observed during the study included dark material around the facial area and red ocular discharge. Minor/transient dermal irritation was noted at the site of test article application. Body weight loss was noted in two males and two females during the study day 0 to 7 body weight interval which is routinely observed in this study type due to experimental manipulation. Body weight gain was noted for all other animals during the test period. All animals exceeded their initial body weight by study termination (day 14). No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute dermal LD50 of Spray--Alpha was estimated to be greater than 5000 mg/kg in the rat.

(8)

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray-Alpha in Sprague Dawley rats when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1200, Acute Dermal Toxicity, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 30, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 25, 2002 (day 0), and concluded with necropsy on July 9, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Alpha ^a	S02.001.3596	Light amber liquid	05/13/02	None provided
Ingredients ^b Herbicide:Fuete-SL Lot No.: 02-01-02				None Provided
Surfactant: Cosmo Flux-411F Lot No.: 244301				10/2003

^aSample pooled at SLI from five different mixes of Spray--Alpha (top/middle/bottom). ^bIngredients used in the five Spray--Alpha mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.1.

SLI Study No. 3596.3 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing. The density of the test article was determined to be 1.08 g/mL.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 70-75°F (21-24°C) and 37-57%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and

SLI Study No. 3596.3 (10)

certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) were provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized (Alpha DS-10 AcuTox) random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 11 weeks of age and weighed 335-374 g prior to dosing. The female animals were approximately 11 weeks of age and weighed 226-249 g prior to dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

On day -1, the fur was removed from the dorsal trunk area of the animals chosen for the limit test using an animal clipper. The clipped area was approximately 10% of the animal's body surface area (BSA). The region included the scapula (shoulder) to the wing of the ilium (hipbone) and half way down the flank on each SLI Study No. 3596.3 (11)

side of the animal. Care was taken to avoid abrading the skin during the clipping procedure.

9.2. Dosing

On the following day (day 0), the test article was administered dermally to approximately 10% of the body surface area. The four corners of this area were delineated in the clipped area with an indelible marker. The test article was then spread evenly over the delineated test area and held in contact with the skin with an appropriately sized 4-ply porous gauze dressing backed with a plastic wrap which was placed over the gauze dressing (occlusive binding). Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area. The elastic wrap was further secured with a tape harness on the cranial end of the trunk and then secured with adhesive tape around the trunk at the caudal end.

The test article was administered at the following level:

Dose Level	Dose Volume	Concentration	No. of	Animals
(mg/kg)	(mL/kg)	(%)	Male	Female
5000	4.63 ^a	100 ^b	5	5

^aAdjusted based on a density of 1.08 g/mL.

^bPooled test article.

Individual doses were calculated based on the animal's day 0 body weight. After an approximate 24-hour exposure period, the binding materials were removed. Residual test article was removed using gauze moistened with deionized water followed by dry gauze.

9.3. Dermal Observations

The test animals were examined for erythema and edema following patch removal and the responses scored on study day 1 and daily thereafter (days 2-14) according to the Macroscopic Dermal Grading System provided in Appendix A which is based on Draize [2]. The dermal test sites were reclipped as necessary to allow clear visualization of the skin.

9.4. Clinical Observations

The animals were observed for clinical abnormalities a minimum of two times on study day 0 (postdose) and daily thereafter (days 1-14). A mortality check was performed twice daily, in the morning and afternoon.

SLI Study No. 3596.3 (12)

9.5. Body Weights

Individual body weights were obtained for the animals prior to dosing on day 0 and on days 7 and 14.

9.6. Gross Necropsy

All animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.7. Protocol Deviations

No protocol deviations occurred during this study.

10. ANALYSIS OF DATA

Data from the study were analyzed and an LD50 value estimated as follows:

< 50% Mortality: LD50 was estimated as greater than the administered dose.

= 50% Mortality: LD50 was estimated as equal to the administered dose.

> 50% Mortality: LD50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

(13)

12. RESULTS

12.1. Mortality

Individual Data: Table 1

No mortality occurred during the limit test.

12.2. Clinical/Dermal Observations

Individual Data: Table 1

Clinical abnormalities observed during the study included dark material around the facial area and red ocular discharge. Minor/transient dermal irritation was noted at the site of test article application.

12.3. Body Weight Data

Individual Data: Table 2

Body weight loss was noted in two males and two females during the study day 0 to 7 body weight interval which is routinely observed in this study type due to experimental manipulation. Body weight gain was noted for all other animals during the test period. All animals exceeded their initial body weight by study termination (day 14).

12.4. Gross Necropsy

Individual Data: Table 3

No significant gross internal findings were observed at necropsy on study day 14. Blood clots observed in one animal at necropsy were thought to have been caused by a possible accidental injury prior to euthanasia.

13. CONCLUSION

Under the conditions of this test, the acute dermal LD50 of Spray--Alpha was estimated to be greater than 5000 mg/kg in the rat.

(14)

Kimberly L. Bonnette, M.S., LATG Study Director

Date

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S.

Associate Toxicologist

Date _)7

SLI Study No. 3596.3 (15)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and</u> <u>Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.

STUDY NO.: 3596.3 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

AN ACUTE DERMAL TOXICITY STUDY IN RATS

		9 10 11 12 13 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 6	ERAL
I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	DAY OF STUDY	0 1 2 3 4 5 6 7 8 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L=LEFT R=RI GHT B=BILATERAL
AUDIV ION I ()			SI A UND EYE(S) UND MOUTH UND MOUTH	SIA UND EYE(S) UND NOSE UND MOUTH	SIA UND EYE(S) - RED - NOSE UND MOUTH	SI A UND EYE(S) UND NOSE	2=MODERATE 3=SEVERE P=PRESENT
MALES 5000 MG/KG		MALE# 0BSERVATI ONS	A5297 SCHEDULED EUTHANASI A ERYTHEM GRADE O ERYTHEM GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND MOUTH ERYTHEM GRADE 1	A5302 SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) DOULAR DISCHARGE - RED DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND MOUTH	A5304 SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O ERYTHEMA GRADE O DARK MATERIAL AROUND EYE(S) OCULAR DI SCHARGE - RED DARK MATERIAL AROUND MOSE DARK MATERIAL AROUND MOUTH INCISOR(S) BROKEN	A5305 SCHEDULED EUTHANASI A EDEMA GRADE 0 ERYTHEMA GRADE 0 DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE ERYTHEMA GRADE 1	GRADE CODE: 1=SLI GHT 2=1

STUDY NO.: 3596.3 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

AN ACUTE DERMAL TOXICITY STUDY IN RATS

I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L=LEFT R=RIGHT B=BILATERAL
I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	E# OBSERVATIONS	A5306 SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) OCULAR DI SCHARGE - RED DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND MOUTH	GRADE CODE: 1=SLI GHT 2=MDDERATE 3=SEVERE P=PRESENT L=LEFT R=RI GHT B=B1LATERAL
MALES	MALE#	A53(GRADE (

(17)

	0F STATE
3596. 3	F
NO. :	U. S.
STUDY 1	I NL/A,

TABLE 1

AN ACUTE DERMAL TOXICITY STUDY IN RATS

KAIS	NS		1 7 8 9 10 11 12 13 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	B=BILATERAL
AN ACUTE DEKMAL TUXICITY STUDY IN KAIS	I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	DAY OF STUDY	0 1 2 3 4 5 6	4 4	4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3=SEVERE P=PRESENT L=LEFT R=RIGHT
	5000 MG/KG		OBSERVATI ONS	SCHEDULED EUTHANASI A EDEM GRADE O ERYTHEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) OCULAR DI SCHARGE - RED DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE	SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	SCHEDULED EUTHANASI A EDEMA GRADE O ERYTHEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	SCHEDULED EUTHANASI A EDEMA GRADE O ERVITEMA GRADE O DARK MATERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE ERYTHEMA GRADE 1	SCHEDULED EUTHANASI A URI NE STAIN EDEMA GRADE O REYTHEMA GRADE O DARK MATERAL AROUND EYE(S) OCULAR DI SCHARGE - RED	1=SLI GHT 2=MODERATE
	FEMALES		FEMALE#	A5339	A5340	A5341	A5342	A5343	GRADE CODE:

(18)

STUDY NO.: 3596.3 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

AN ACUTE DERMAL TOXI CI TY STUDY IN RATS

INDEVIDUAL CLINECAL OBSERVATIONS (POSETIVE FEINDENGS)	DAY OF STUDY	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	۵. ۵.	2=M0DERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
				2=MDDERATE 3
ى		OBSERVATI ONS	·	
FEMALES 5000 MG/K		FEMALE#	A5343 (CO DA DA	GRADE CODE: 1=SLI GHT

STUDY NO.: 3596.3 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

AN ACUTE DERMAL TOXICITY STUDY IN RATS

AL# 5297 5305 5306 5306	5000 MG/KG DAY 339 374 337 350 350	CG DAY OF STUDY 0 7 839 331 839 331 842 332 842 342 850 357 855 331 850 357	Y OF STUDY Y OF STUDY 331 346 333 346 333 346 333 349 352 369 352 369
S. D.	16.5	25. 0	30.1
N		5	5

STUDY NO.: 3596.3 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

AN ACUTE DERMAL TOXICITY STUDY IN RATS

(GRAMS)
WEI GHTS
BODY
I NDI VI DUAL

I NDI VI DUAL BODY WEI GHTS (GRAMS)										
	14 AT DEATH (DAY)	259	232	258	248	241	248	11.5	5	
	DAY OF STUDY 0 7	236	218	247	232	233		10.4	5 2	
5000 MG/KG	- A		226	244	238	230	237	9.5		
FEMALES	#	A5339	A5340	A5341	A5342	A5343	MEAN	S. D.	N	

243

PAGE 2

INL/A, U.S	INL/A, U.S. DEPARTMENT OF STATE	VT OF ST	TE TABLE 3	
			AN ACUTE DERMAL TOXICITY STUDY IN RATS	
MALES	5000 MG/KG		INDIVIDUAL GROSS NECROPSY OBSERVATIONS	
ANI MAL#	DAY OF DEATH	STUDY DAY	OBSERVATION	FATE
A5297	9- JUL- 02	14	TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASI A
A5302	9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASI A
A5304	9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASI A
A5305	9- JUL- 02	14	CAVITY, ABDOMENAL: CONTENT ABNORMAL; PRESENT BLOOD AND BLOOD CLOTS DISPERSED THROUGHOUT ABDOMENAL VISCERA	SCHEDULED EUTHANASI A
A5306	9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASI A

(22)

STUDY NO.: 3596.3 INL/A, U.S. DEPARTMENT OF STATE

TABLE 3

PAGE 2

Ξ
STUDY
TOXI CI TY
DERMAL
ΠE

FEMALES ANI MAL#	5000 MG/KG DAY OF DEATH	STUDY DAY	AN ACUTE DERMAL TOXICITY STUDY IN RATS INDIVIDUAL GROSS NECROPSY OBSERVATIONS OBSERVATION FATE
A5339	9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS SCHEDULED EUTHANASIA
A5340	9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS SCHEDULED EUTHANASIA
A5341	9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS SCHEDULED EUTHANASIA
A5342	9-JUL-02	14	HAIRCOAT: DARK MATERIAL; PRESENT AROUND NOSE, RED
A5343	A5343 9- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS SCHEDULED EUTHANASIA

(23)

Annex 56-B

SLI Study No. 3596.3

(24)

APPENDIX A

Macroscopic Dermal Grading System

(25)

MACROSCOPIC DE RMAL GRADING SYSTEM

ERYTHEMA AND EDEMA OBSERVATIONS			
OBSERVATION	DEFINITION	CODE	
Erythema – Grade 0	No erythema	0	
Erythema – Grade 1	Very slight erythema (barely perceptible)	1	
Erythema – Grade 2	Well-defined erythema	2	
Erythema – Grade 3	Moderate to severe erythema	3	
Erythema – Grade 4	Severe erythema (beet redness)	4	
Maximized Grade 4	Notable dermal lesions (see below)	M – 4 (see below)	
Edema – Grade 0	No edema	0	
Edema – Grade 1	Very slight edema (barely perceptible)	1	
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	2	
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	3	
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure) 4		
NOTE: Each animal was assigned an erythema and edema score. The most severely affected			

NOTE: Each animal was assigned an erythema and edema score. The most severely affected area within the test site was graded. If eschar, blanching, ulceration and/or necrosis greater than grade 1 was observed, then the "Maximized Grade 4" was assigned to the test site in place of the erythema score and the type of notable dermal lesion(s) (e.g., eschar - grade 2, blanching - grade 3, ulceration - grade 4, etc.) was noted. The presence of any other dermal changes (e.g., desquamation, fissuring, eschar exfoliation, etc.) was also recorded.

(26)

MACROSCOPIC DERMAL GRADING SYSTEM

NOTABLE DERMAL LESIONS			
OBSERVATION	CODE	DEFINITION	
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.	
Eschar – Grade 2	ES-2	> 10% < 25% of test site.	
Eschar – Grade 3	ES-3	> 25% < 50% of test site.	
Eschar – Grade 4	ES-4	> 50% of test site.	
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.	
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.	
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.	
Blanching – Grade 4	BLA-4	> 50% of test site.	
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.	
Ulceration – Grade 2	U-2	> 10% < 25% of test site.	
Ulceration – Grade 3	U-3	> 25% < 50% of test site.	
Ulceration – Grade 4	U-4	> 50% of test site.	
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (Note color of necrosis).	
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (Note color of necrosis).	
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (Note color of necrosis).	
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (Note color of necrosis).	

(27)

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL DERMAL FINDINGS					
OBSERVATION	DEFINITION	CODE			
Desquamation	Characterized by scaling or flaking of dermal tissue with or without denuded areas.	DES			
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS			
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF			
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)			
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB			
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).				
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1			
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2			
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3			
Superficial Lightening - Grade 4	> 50% of test site	SL-4			

(28)

MACROSCOPIC DERMAL GRADING SYSTEM

	ADDITIONAL FINDINGS	
OBSERVATION	DEFINITION	CODE
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which do not interfere with the scoring of the test site.	IT

(29)

APPENDIX B

SLI Personnel Responsibilities

SLI Study No. 3596.3 (30)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kathy A. Pugh, ALAT	Primary Technician/Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS WITH SPRAY--ALPHA

FINAL REPORT

OPPTS Guidelines

870.1300

Author

Kimberly L. Bonnette, M.S., LAGT

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.4

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 48

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS WITH SPRAY--ALPHA

FINAL REPORT

OPPTS Guidelines

870.1300

Author

Kimberly L. Bonnette, M.S., LAGT

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.4

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 48

(2)

SLI Study No. 3596.4

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: Date

Title

Signature

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

(3)

Kimberly L. Bonnette, M.S., LAGT Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 29 Aug 02

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	03/31/02
Dose Preparation	06/06/02
Data Audit	08/27/02
Draft Report Review	08/27/02
Analytical Chemistry Report Review	08/27/02
Protocol Amendment Review	08/28/02
Final Report Review	09/03/02

Reports to Study Director and Management 08/27/02, 09/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Rebecca A. Young / / / Quality Assurance Team Leader

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date _

Date 9/3/02

(5)

SLI Study No. 3596.4

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES6
6. SUMMARY7
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES11
10. ANALYSIS OF DATA14
11. MAINTENANCE OF RAW DATA AND RECORDS14
12. RESULTS
13. CONCLUSION
14. REPORT REVIEW16
15. REFERENCE

Annex 56-B

(6)

SLI Study No. 3596.4

5. LIST OF TABLES AND APPENDICES

Tables

2. 3.	Summary of Aerosol Generation and Chamber Environmental Data Individual Clinical Observations Individual Body Weights Individual Gross Necropsy Observations	19 23
Fig	ure	
1.	Multistage 10L Nose-Only Inhalation Chamber	27
<u>Ap</u>	pendices	
Α.	Preliminary Aerosol Generation Trials	28
В.	Analytical Chemistry Report	32
C.	Individual Aerosol Generation and Chamber Environmental Data	39

6. SUMMARY

The four-hour nose-only inhalation toxicity of Spray-Alpha was evaluated in Sprague Dawley rats. A limit test was performed in which a group of five male and five female rats received a four-hour nose-only inhalation exposure to a time-weighted average aerosol concentration (analytically determined) of 3.27 mg/L. Following the exposure, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all limit test animals at the time of scheduled euthanasia (day 14).

No mortality occurred during this study. The most notable clinical abnormalities observed during the study included decreased/no defecation, soft stools, feces small in size, rough coat, breathing abnormalities, decreased food consumption and dark material around the facial area. Body weight loss was noted for one male and one female during the study day 0-7 body weight interval. Body weight gain was noted for all other animals during the test period. All animals exceeded their initial body weight by study termination (day 14). No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute inhalation LC50 of Spray--Alpha was estimated to be greater than 3.27 mg/L in the rat.

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Alpha in Sprague Dawley rats when administered by a four-hour nose-only inhalation exposure. This study was intended to provide information on the potential health hazards of the test article with respect to inhalation exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1300, Acute Inhalation Toxicity, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 30, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 6, 2002 (day 0) and concluded with terminal euthanasia on June 20, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

	Assigned	Physical	Receipt	Expiration
Sponsor's ID	SLI ID	Description	Date	Date
SprayAlpha ^a	S02.001.3596	Light amber liquid	05/13/02	None provided
Ingredients ^b				
Herbicide:Fuete-SL				None
Lot No.: 02-01-02				Provided
Surfactant: Cosmo Flux-411F				10/2003
Lot No.: 244301				

^aSample pooled at SLI from five different mixes of Spray--Alpha (top/middle/bottom). ^bIngredients used in the five Spray--Alpha mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.1.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was utilized as received from the Sponsor and dispensed fresh on the day of dosing. The test article was stirred continuously during exposure.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-74°F (22-23°C) and 35-61%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study (except during the time that the animals were acclimated to the exposure tubes and maintained in the inhalation room for the exposure procedure). The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study (except during the time that the animals were acclimated to the exposure tubes and maintained in the inhalation room for the exposure procedure). The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized (Alpha DS-10 AcuTox) random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 10 weeks of age and weighed 248-293 g on the day of exposure. The female animals were approximately 10 weeks of age and weighed 170-190 g on the day of exposure.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

9.1.1. Test Article Volatility Determination

The volatility of the test article relative to a distilled water standard was determined prior to experimental initiation. This procedure was performed in order to determine if the test article had sufficiently low volatility to allow for an accurate gravimetric determination of the aerosol concentration. A known quantity of the test article was placed on a preweighed filter disk and was allowed to evaporate for a total of ten minutes. The test article weight was determined each minute and the amount of evaporation of the test article was then determined. The results of this volatility trial indicated that the test article evaporation rate (0.45 mg/minute) was comparable to the SLI determined distilled water evaporation rate (0.55 mg/minute); therefore, was considered to not be volatile.

9.1.2. Preliminary Aerosol Generation Trials

Prior to experimental initiation, preliminary aerosol generation trials were conducted. These trials were performed in order to determine the most efficient means of generating an aerosol of the appropriate concentration while utilizing equipment that would reduce the aerodynamic particle size. Data obtained during the preliminary aerosol generation trials are presented in Appendix A.

9.2. Limit Test

9.2.1. Aerosol Generation Equipment

The test aerosol was generated with a Pistol Spraying System. Conditioned high pressure external air was used in generating the test atmosphere. The aerosol was blown through the 5L Elutriator, the nose-only inhalation chamber and then vented from the chamber to an air treatment system which consisted of a prefilter, a HEPA filter, a charcoal bed and a water scrubbing tower (see Figure 1).

9.2.2. Dosing

On day 0, the animals chosen for the limit test were weighed, placed in a noseonly exposure tube and allowed to acclimate to the exposure tube for at least 1 hour. Animals that appeared to have been acclimated to the exposure tube (i.e., minimal struggling and no inversion) were considered to be acceptable and removed from the exposure tube and returned to their cages until initiation of the aerosol exposure. Animals that did not appear to acclimate to the exposure tube were not acceptable and were removed from the exposure tube and returned to their cages.

The acceptable animals were then placed in exposure tubes and the tubes inserted into the Multistage 10L nose-only inhalation chamber and the test article aerosolized at the following level:

Exposure Level	No. of	Animals
(mg/L)	Male	Female
3.27	5	5

The aerosol exposure consisted of a 3-minute T99 equilibration period, a 240minute exposure period and a 3-minute de-equilibration period equal to the T99 equilibration period. After each aerosol exposure, animals were removed from the exposure tubes and residual test article was removed from the animal's exterior surfaces (where practical) by wiping the haircoat with a towel. The animals were then returned to ad libitum feed and water. The following parameters were measured during the exposure.

9.2.2.1. Chamber Air Flow

Air flow readings were recorded at the initiation of the T99 equilibration period, at approximate 30-minute intervals during the aerosol exposure and at the conclusion of the de-equilibration period.

9.2.2.2. Aerosol Concentration

The aerosol concentration was measured at the beginning of the aerosol exposure (after equilibration), at approximate 30-minute intervals during the aerosol exposure and at the conclusion of the aerosol exposure (before de-equilibration). The concentration of the test article aerosol was collected in the inhalation chamber by gravimetric technique. A 5 L sample of the aerosol was drawn from the breathing zone of the chamber through a preweighed glass fiber filter. The change in weight of the filter (mg) was then determined and this value was divided by the volume of chamber atmosphere sampled (L) to yield the gravimetric concentration (mg/L). The average time-weighted gravimetric

concentration of the test atmosphere was then calculated for the exposure. For the analytical concentration, the gravimetrically obtained samples were analyzed by Springborn Laboratories, Inc. for the glyphosate component, a non-volatile component of the test article. These analyses were performed in order to determine the analytical (actual) concentrations of the aerosol in the chamber for each sampling period. The average time weighted analytical concentration of the test atmosphere was then calculated for the exposure. Chemistry methods and results are detailed in the Analytical Chemistry Report (Appendix B).

9.2.2.3. Chamber Temperature and Humidity

The chamber temperature and humidity were measured electronically and recorded at approximate 30-minute intervals during the aerosol exposure.

9.2.2.4. Aerosol Aerodynamic Particle-Size Distribution

The aerosol aerodynamic particle-size distribution was determined three times during the aerosol exposure using the ITP 7 Stage Cascade Impactor. Each stage of the impactor was fitted with a preweighed glass fiber filter. Five liters per minute of the chamber air were drawn through the impactor and the change in weight of each filter was then determined and recorded. The mean particle-size distribution was subsequently plotted using an Excel computer adaptation of the manual method. The Mass Median Aerodynamic Diameter, Geometric Standard Deviation and percentage of particles $\leq 4.0 \mu$ were then determined. At least one hour passed between each aerosol particle-size analysis.

9.2.2.5. Chamber Oxygen

Chamber oxygen content was measured and recorded at approximate 30-minute intervals during the aerosol exposure.

9.2.3. Clinical Observations

The limit test animals were observed for clinical abnormalities during each aerosol exposure, two times on study day 0 (post-exposure) and daily thereafter (days 1-14). A general health/mortality check was performed twice daily (in the morning and in the afternoon).

9.2.4. Body Weights

Individual body weights were obtained for the limit test animals prior to dosing on day 0 and on days 7 and 14.

9.2.5. Gross Necropsy

All limit test animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.3. Protocol Deviations

No protocol deviations occurred during this study.

10. ANALYSIS OF DATA

Data from the limit tests were analyzed and an LC50 value estimated as follows:

- < 50% Mortality: LC50 was estimated as greater than the administered dose.
- = 50% Mortality: LC50 was estimated as equal to the administered dose.
- > 50% Mortality: LC50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females. The aerodynamic particle-size distribution of the test article aerosol was plotted using an Excel computer adaptation of the three cycle logarithmic probability paper as per the ITP Cascade Impactor instruction manual. The Mass Median Aerodynamic Diameter, Geometric Standard Deviation and particles \leq 4.0 µ was determined based on the plotted distribution.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Aerosol Generation and Chamber Environmental Data

12.1.1. Aerosol Generation Data

Individual Data: Table 1

The average time-weighted analytical concentration for the aerosol exposure was determined to be 3.27 mg/L. The mass median aerodynamic diameter and geometric standard deviation of the sampled particles were 2.6 μ ± 1.8. The percentage of particles \leq 4.0 μ was determined to be 77%.

12.1.2. Chamber Environmental Data

Individual Data: Table 1

Chamber temperature and relative humidity for the aerosol exposure ranged from 72.6-73.7°F and 65.7-69.3%, respectively. Oxygen content was maintained at 20.9% throughout the exposure.

12.2. Limit Test Data

12.2.1. Mortality

Individual Data: Table 2

No mortality occurred during this study.

12.2.2. Clinical Observations

Individual Data: Table 2

The most notable clinical abnormalities observed during the study included decreased/no defecation, soft stools, feces small in size, decreased food consumption and rough coat. Clinical abnormalities also observed during the study included transient incidences of breathing abnormalities and dark material around the facial area, which were findings consistent with dosing an inhalation study. No positive findings were noted at the time of observation during the 4-hour exposure period.

In addition, the dose level actually conducted was significantly higher (3.27 mg/kg) than the required dose level (2.0 mg/L) and did not result in any mortality.

12.2.3. Body Weight Data

Individual Data: Table 3

Body weight loss was noted for one male and one female during the study day 0-7 body weight interval. Body weight gain was noted for all other animals during the test period. All animals exceeded their initial body weight by study termination (day 14).

(16)

SLI Study No. 3596.4

12.2.4. Gross Necropsy

Individual Data: Table 4

No significant gross internal findings were observed at necropsy on study day 14. One animal was observed to have a thin area of the diaphragm which was not considered to be test article-related.

13. CONCLUSION

Under the conditions of this test, the acute inhalation LC50 of Spray-Alpha was estimated to be greater than 3.27 mg/L in the rat.

Kimberly L.)Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S. Associate Toxicologist

Date

Date 9/3/02

15. REFERENCE

1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.

	S			
TABLE 1	AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS	CLIENT: INL/A,US DEPARTMENT OF STATE SUMMARY OF AEROSOL GENERATION AND	CHAMBER ENVIRONMENTAL DATA	
		ARTMENT OF STATE		
	SLI STUDY NO.: 3596.4	CLIENT: INL/A,US DEF		

	EXPOSURE LEVEL (MG/L)
	3.27
CHAMBER AND EXPOSURE DATA	
CHAMBER VOLUME (L):	10
ELUTRIATOR VOLUME (L):	5
MEAN AIR FLOW RATE (L/MIN):	24
MEAN AIR CHANGES PER HOUR:	95.24
T99 EQUILIBRATION PERIOD (MIN.):	ε
EXPOSURE TIME (MIN):	240
DE-EQUILIBRATION PERIOD (MIN):	Э
AEROSOL CONCENTRATIONS	
CALCULATED NOMINAL CONCENTRATION (MG/L):	113.68
TIME-WEIGHTED MEAN ANALYTICAL CONCENTRATION (MG/L):	3.27
AEROSOL PARTICLE-SIZE ANALYSIS	
MASS MEDIAN AERODYNAMIC DIAMETER (µ):	2.6
GEOMETRIC STANDARD DEVIATION:	± 1.8
PERCENTAGE OF PARTICLES \leq 4.0 µ (%):	77
CHAMBER ENVIRONMENTAL DATA	
TEMPERATURE RANGE (°F):	72.6-73.7
HUMIDITY RANGE (%):	65.7-69.3
OXYGEN CONTENT (%):	0.00

(18)

PAGE 1

STUDY NO. : 3596.4 INL/A, US DEPARTMENT OF STATE

TABLE 2

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

		10 11 12 13 14	۵.	م م	۵.	۵.	
SNO	Y	6 7 8 9 10 11	4 4	د د د د د د د د د د د د د د د		4 4 4 4 4 4	B=BILATERAL
OBSERVATI I NDI NGS)	DAY OF STUDY	345		م م م	ď	<u>م</u>	R=RI GHT
AL CLINICAL OBSERVA (POSITIVE FINDINGS)	D	0 1 2	4 4 44	ממ מ מ	ፈ ፈ	4 4 4	L=LEFT
I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)							P=PRESENT
							3=SEVERE
		NS	EUTHANASI A BREATHI NG S E AL AROUND NOSE FOOD CONSUMPTI ON	EUTHANASI A BREATHING REATHING AAAROUND NOSE AAL AROUND MOUTH FOOD CONSUMPTION	EUTHANASI A BREATHI NG FOOD CONSUMPTI ON	EUTHANASI A BREATHI NG REATHI NG S	2=MDDERATE
3.27 MG/L		0BSERVATI 0NS	SCHEDULED EUTHANASI A CONGESTED BREATHI NG FEW FECES SOFT STOOLS DARK MATERI AL AROUND NOSE DERK MATERI AL AROUND NOSE DECREASED FOOD CONSUMPTIO	SCHEDULED EUTHANASI A RALES CONGESTED BREATHI NG LABORED BREATHI NG TEADRED BREATHI NG FEW FECTS NO FECTS NO FECTS DARK MATERI AL AROUND MOUTH DARK MATERI AL AROUND MOUTH NASAL DI SCHARGE CLEAR NASAL DI SCHARGE CLEAR DECREASED FOOD CONSUMPTION	SCHEDULED EUTH CONGESTED BREA' FEW FECES DECREASED FOOD	SCHEDULED EUTHANA RALES CONGESTED BREATHI LABORED BREATHI NG FEW FECES SOFT STOOLS	1=SLI GHT
MALES 3.		MALE#	A5241 SC CC FT DA DA DD	A5253 SC RA CC D D D D D D D D D D D D D D D D D D	A5252 SC CC FF	A5254 SC RAF CC CC CC CC CC CC CC CC CC CC CC CC CC	GRADE CODE:

(19)

STUDY NO.: 3596.4 INL/A, US DEPARTMENT OF STATE

TABLE 2

PAGE 2

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

		12 13 14	1 1 1 1 1 1 1 1 1 1 1	۵.	
		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		Ч Ч	=BILATERAL
II ONS	YQ	. 9		ሻ ሻ	- B
ERVAT NGS)	F STI	4 5	1 1 1 1	Ч	RI GH
I NDI	DAY OF STUDY	3	1 1 1		
AL CLINICAL OBSERVA (POSITIVE FINDINGS)	Q	0 1 2	പപ	ሻ ሻ ሻ	L=LEFT
I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)		1	1 1 1 1 1 1 1 1 1 1		P=PRESENT
			1 1 1 1 1 1 1 1 1		3=SEVERE
		SN	AROUND NOSE CONSUMPTION	IANASI A VTHI NG II NG	2=MODERATE
3. 27 MG/L		OBSERVATI ONS	A5254 (CONTINUED) ROUGH COAT DARK MATERI AL AROUND NOSE DECREASED FOOD CONSUMPTION	SCHEDULED EUTHANASI A CONGESTED BREATHI NG LABORED BREATHI NG FEW FECES	GRADE CODE: 1=SLIGHT 2=MODERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
MALES		MALE#	A5254 (A5257	GRADE CODE

(20)

STUDY NO.: 3596.4 INL/A, US DEPARTMENT OF STATE

TABLE 2

PAGE 3

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

			13 14	e.	٩	٩	
STUDY IN RATS	ONS	Y	6 7 8 9 10 11 12 13 14	4 4 4 4 4 4 4	ন ন ন ন ন ন		B=BILATERAL
AN ACUTE NOSE-UNLY INHALATION TOXICLTY STUDY IN KATS	I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	DAY OF STUDY	1 2 3 4 5 6			4 4 4 4	L=LEFT R=RI GHT
VOSE- ONLY INHAL	I NDI VI DUAL CLI) (Posi T)		0			-	P=PRESENT L=I
AN ACUTE I							3=SEVERE
			SNI	EUTHANASI A BREATHI NG REATHI NG LL IN SI ZE T RI AL AROUND NOSE RI AL AROUND MOUTH FOOD CONSUMPTION	EUTHANASI A BREATHI NG REATHI NG LL IN SI ZE T AROUND EYE(S) RI AL AROUND MOUTH FOOD CONSUMPTION	EUTHANASI A BREATHI NG LL IN SI ZE FOOD CONSUMPTI ON	2=MODERATE
	3.27 MG/L		0BSERVATI 0NS	SCHEDULED EUTHANASI A RALES CONGESTED BREATHING LABORED BREATHING FEW FECES FEW FECES FEW FECES ROUGH COAT NARTERIAL AROUND NOSE DARK MATERIAL AROUND MOUTH DARK MATERIAL AROUND MOUTH DECREASED FOOD CONSUMPTION	SCHEDULED EUTHANASI A CONGESTED BREATHI NG LABORED BREATHI NG GARPI NG FEW FECES FECES SMALL IN SI ZE ROUGH COAT DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND NOSE	SCHEDULED EUTH CONGESTED BREA FEW FECES FECES SMALL IN DECREASED FOOD	1=SLI GHT
	FEMALES 3		FEMALE#	A5279 A5279	A5284 25284 111111111111111111111111111111111111	A5283 S	GRADE CODE:

(21)

PAGE 4					
TABLE 2	AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INDIVIDUAL CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY OF STUDY 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		P=PRESENT L=LEFT R=RIGHT B=BILATERAL
STUDY NO.: 3596.4 INL/A, US DEPARTMENT OF STATE	AN ACUTE	FEMALES 3. 27 MC/L	FEMALE# 0BSERVATI ONS	A5281 SCHEDULED EUTHANASI A RALES CONCESTED BREATHI NG CANCESTED BREATHI NG LABORED BREATHI NG FEW FECES URIN MATERI AL AROUND WOSE URIN MATERI AL AROUND MOUTH DARK MATERI AL AROUND MOUTH DARK MATERI AL AROUND MOUTH DARK MATERI AL AROUND MOUTH DECREASED FOOD CONSUMPTI ON A5282 SCHEDULED EUTHANASI A CONCESTED BREATHI NG CASPI NG FARK MATERI AL AROUND EYE (S) DARK MATERI AL AROUND EYE (S) DECREASED FOOD CONSUMPTI ON	GRADE CODE: 1=SLIGHT 2=MODERATE 3=SEVERE

275

(22)

PAGE 1

STUDY NO.: 3596.4 INL/A, US DEPARTMENT OF STATE

TABLE 3

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

S)
(GRAM
WEI GHTS
BODY
VI DUAL
IUNI

	14 AT DEATH (DAY)	339							
÷		339	292	277	306	294	302	23.3	5
. ~			34	253	269	268	272	19.2	S
DAY OF STUDY	7	304	26					-	

STUDY NO.: 3596.4 INL/A, US DEPARTMENT OF STATE

TABLE 3

PAGE 2

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

I NDI VI DUAL BODY WEI GHTS (GRAMS)	· OF STUDY 7 14 AT DEATH (DAY)	193							5 5
I			212	195	206	191	199	9.1	5
	DAY OF STUDY 0 7	176	194	180	185	180	183	6.9	5
3.27 MG/L	DAY 0	171	190	172	188	170	178	9.9	5
FEMALES 3.2	ANI MAL#	A5279	A5284	A5283	A5281	A5282	MEAN	S. D.	

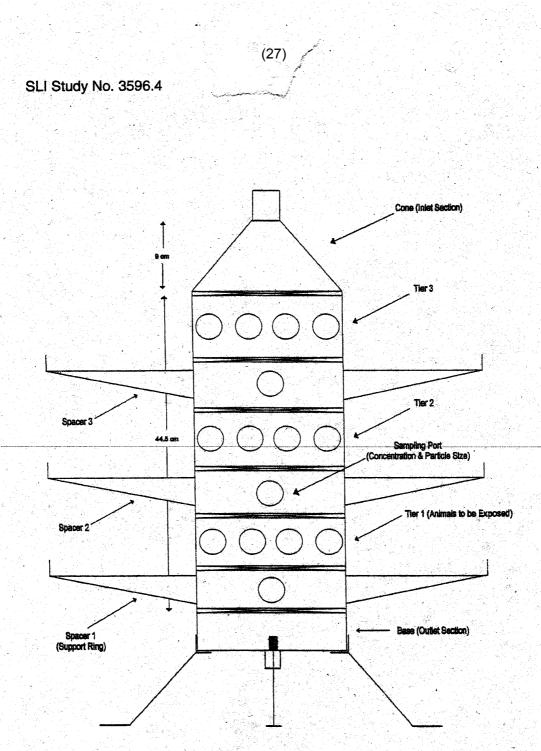
	· STATE
	0F
3596.4	DEPARTMENT
: .0N	SU
STUDY	I NL/A,

TABLE 4

		FATE	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A
AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS	IDUAL	OBSERVATI ON	DI APHRAGMÉ THI N AREA(S); PRESENT TENDI NOUS PORTION, ONE, 0.7 X 0.5 CM DI AMETER, PORTI ON OF MEDI AL LIVER LOBE MI SSHAPEN AND EXTENDS INTO THI N AREA	ALL TISSUES WITHIN NORMAL LIMITS			
		STUDY DAY	14	14	14	14	14
	3.27 MG/L	DAY OF S DEATH	20-JUN-02	20-JUN-02	20-JUN-02	20-JUN-02	20-JUN-02
	MALES	ANI MAL#	A5241	A5253	A5252	A5254	A5257

PAGE 1

STUDY NO.: 3596.4 I NL/A, US DEPARTMENT OF STATE


TABLE 4

PAGE 2

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

	FATE	SCHEDULED EUTHANASI A					
I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS					
	STUDY DAY	14	14	14	14	14	
3.27 MG/L	DAY OF S DEATH	20-JUN-02	20-JUN-02	20-JUN-02	20-JUN-02	20-JUN-02	
FEMALES	ANI MAL#	A5279	A5284	A5283	A5281	A5282	

(26)

MULTI-STAGE 10 L NOSE ONLY INHALATION CHAMBER

✓ Figure 1

Annex 56-B

(28)

SLI Study No. 3596.4

APPENDIX A

Preliminary Aerosol Generation Trials

1. PRELIMINARY AEROSOL GENERATION TRIALS

Prior to experimental initiation, preliminary aerosol generation trials were conducted. These procedures were performed in order to determine the most efficient means of generating an aerosol of the test article. The type of equipment used during each aerosol trial procedure is presented in Trial Table 1. In each trial, attempts were made to generate the highest concentration of the test article while utilizing equipment that would minimize the aerodynamic particle size of the aerosol.

The results indicated that the equipment design/pump speed utilized during Trial #7 produced an analytical aerosol concentration ≥ 2.00 mg/L. Using the equipment design determined by the aerosol generation trials, the aerosol aerodynamic particle-size distribution was then determined utilizing the ITP 7 Stage Cascade Impactor. The aerodynamic particle size was acceptable. Therefore, this equipment design was used for the LC50 study exposure.

PAGE 1

SLI STUDY NO.: 3596.4 CLIENT: INL/A, US DEPARTMENT OF STATE PRELIMINARY AEROSOL GENERATION TRIALS

TRIAL NO.	EQUIPMENT USED	INPUT AIR (PSI)	TEST ARTICLE CONCEN- TRATION (%)	MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L) GRAVIMETRIC ANAI YTIC	-AINABLE DNS (MG/L) ANAI YTICAI
-	age 10L	30	100		3.71
	5L Elutriator Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle 4.0 mL/min pump speed				
	16 gauge tubing size				
7	One Multistage 10L Nose-Only Chamber	30	100	2.02	4.132
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	4.0 mL/min pump speed				
	16 gauge tubing size				
ო	One Multistage 10L Nose-Only Chamber	30	100	0.82	I
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	0.8 mL/min pump speed				
	14 gauge tubing size				
4	One Multistage 10L Nose-Only Chamber	30	100	0.50	1.20
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	0.5 mL/min pump speed				
	14 gauge tubing size				
Note: Ta	Note: Targeting ≥ 2.00 mg/L gravimetric concentration for Trials 1-2; ≥ 1.00 mg/L gravimetric concentration for Trial 3 and ≥ 0.50	:; <u>></u> 1.00 mg/L	. gravimetric conc	centration for Trial	3 and <u>></u> 0.50
mg/L grav	mg/L gravimetric concentration for Trial 4.				

(30)

Annex 56-B

TRIAL TABLE 1	PRELIMINARY AEROSOL GENERATION TRIALS
SLI STUDY NO.: 3596.4	CLIENT: INL/A, US DEPARTMENT OF STATE

TRIAL		INPUT AIR	TEST ARTICLE CONCEN	MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L)	TAINABLE IONS (MG/L)
NO.	EQUIPMENT USED	(ISI)	TRATION (%)	GRAVIMETRIC	ANALYTICAL
5	One Multistage 10L Nose-Only Chamber	30	100	0.50	1.16
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	0.5 mL/min pump speed				
	14 gauge tubing size				
9	One Multistage 10L Nose-Only Chamber	30	100	0.84	1
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	1.0 mL/min pump speed				
	14 gauge tubing size				
2	One Multistage 10L Nose-Only Chamber	30	100	1.48	-
	5L Elutriator				
	Master Flex Pump and Pump Heads 7523-30 and 77200-60				
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle				
	2.5 mL/min pump speed				
	14 gauge tubing size				
Note: T	Note: Targeting ≥ 0.50 mg/L gravimetric concentration for Trial 5; ≥ 1.00 mg/L gravimetric concentration for Trial 6 and ≥ 1.50 mg/L	- 1.00 mg/L gra	vimetric concent	ration for Trial 6 ar	d <u>></u> 1.50 mg/L

(31)

gravimetric concentration for Trial 7.

PAGE 2

(32)

SLI Study No. 3596.4

APPENDIX B

Analytical Chemistry Report

1. SPRAY--ALPHA ANALYSIS

The analytical method for the analysis of the glyphosate component of Spray--Alpha was validated prior to the analytical chamber concentration analyses performed at Springborn Laboratories, Inc. This method was utilized to determine the inhalation chamber concentration during the Acute Nose -Only Inhalation Toxicity Study.

1.1. Experimental System

1.1.1. HPLC System

HPLC Model: Pump: Injector:	
Detector:	
Data System:	H-P 3396B Integrator
Precolumn:	Phenomenex, SecurityGuard, C18, 4.0 x 3.0 mm ID
Column:	Phenomenex, Spherex, C18, 5µ, 250 x 4.6 mm ID
Temperature:	Ambient
Detection:	500 nm, 0.4000 AUFS
Mobile Phase:	A: 0.05 M HCO ₂ NH ₄ , pH 3.6/5% ACN; B: 100% ACN
Gradient:	100% A hold for 6 minutes; linear change to 25% A/75% B over 1 minute; hold for 5 minutes; linear change to 100% A over 1 minute; hold at 100% A for 15 minutes.
Flow Rate: Injection Volur	
1.1.2. Appara	atus
	Mettler AG 245, accuracy of 0.0001 gram

Glassware: Assorted volumetric glassware

- Filters: Gelman, glass fiber; Millipore 0.2µ Nylon-66; Whatman Puradisc 25PP 0.45µm
- Shaker: Labline, Multi-Wrist Shaker
- Oven: Boekel Model 107905

1.1.3. Solutions and Reagents

1.1.3.1. Reagents

Water, Fisher, HPLC Grade, Lot # 024948 Acetonitrile, Fisher, HPLC Grade, Lot # 011777 Methanol, Fisher, HPLC Grade, Lot # 011803 NBD Chloride, Aldrich, 98%, Lot #12214L1 Hydrochloric Acid, Fisher, ACS Grade, Lot # 012161 Potassium Tetraborate Tetrahydrate:, Aldrich, 99%, Lot # 15325D1 Formic Acid, Fisher, Laboratory Grade, Lot # 003630 Ammonium Formate, Fisher, Lot # 990125

1.1.3.2 Solutions

<u>0.37 M Borate Solution:</u> Prepared by dissolving approximately 11.44 g of potassium tetraborate tetrahydrate in 100 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>1.2 N HCI:</u> Prepared by dissolving 10 mL of HCl in 90 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>25 mM NBD-CI</u>: Prepared by dissolving approximately 2.5 g of NBD-CI in 500 mL of methanol. The resulting solution was stable for 6 months under ambient storage conditions.

<u>Mobile Phase A:</u> Prepared by dissolving approximately 1.58 g of ammonium formate in 950 mL of water. The pH was adjusted to approximately 3.6 with formic acid. Added 50 ml of acetonitrile. The resulting solution was mixed thoroughly, filtered through a 0.2μ Nylon-66 filter and degassed by helium sparging prior to use.

Mobile Phase B: Acetonitrile used 100% as received.

Diluent: All standards and samples were diluted in water.

<u>Stock Standard Solution (Trial- mg/L):</u> Prepared by dissolving 101.9 mg of the Spray--Alpha formulation in a 25 mL flask with diluent.

<u>Stock Standard Solution (Exposure #1- mg/L):</u> Prepared by dissolving 236.0 mg of Spray--Alpha formulation in a 25 mL flask with diluent.

<u>Standard Solutions</u>: Prepared by serially diluting the stock standard solution with water. The final concentrations of the solutions were in the range of approximately 0.4 to 2.9 mg/mL (trial) and 0.9 to 4.7 mg/mL (Exposure # 1). These solutions were then further diluted in diluent at a ratio of 1:10 and filtered through Whatman Puradisc 25PP 0.45 μ m filters prior to derivatization.

<u>Chamber Concentration Solutions</u>: Prepared by placing the weighed glass fiber filter used for gravimetric concentration determination in a capped container with 10 mL of diluent. The solutions were then agitated mechanically for 5 minutes further diluted in diluent at a ratio of 1:10 and filtered through Whatman Puradisc 25PP 0.45 μ m filters prior to derivatization.

<u>Derivatization Procedure:</u> In order to analyze the glyphosate component, a precolumn derivatization was performed by adding 1.2 mL of the appropriate control, standard, or sample solution to a labeled scintillation vial. Both 0.8 mL of the borate solution and 2.4 mL of the NBD-Cl solution were added to each vial. The vials were then capped and shaken by hand prior to being heated in an oven at 80° C for 30 minutes. After removal from the oven, the vials were allowed to cool for 10 minutes followed by the addition of 0.9 mL of the HCl solution. After the vials were again shaken by hand, they were allowed to stand for 10 minutes in order for incipient precipitation to occur. These solutions were then transferred to injection vials.

1.2. Analytical Procedures

1.2.1. Standard Curve Analysis

The peak area of the glyphosate acid component of each standard were determined, measured, combined, and plotted as a function of concentration to generate a standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 2.

1.2.2. Sample Analysis

The peak areas of the glyphosate acid component of each sample were measured and combined and then the concentration was determined by linear fit to the standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 2.

(36)

SLI Study No. 3596.4

1.3. Results and Conclusions

1.3.1. Analytical Chamber Concentration

The actual sample results of the trial work are shown in Chemistry Table 1. The actual sample results of the analytical chamber analysis are shown in Chemistry Table 2.

Date _____

M. Gardner Clemons, B.A. Manager of Analytical Chemistry And Pharmacy.

Chemistry Table 1

Standard Curve and Sample Analysis Values for Trial Work

	Theoretical Conc.		Analytical Chamber
Sample No.	(mg/L)	Peak Area	Conc. (mg/L)
Std 1	0.8152	25090	NA
Std 2	2.446	77738	NA
Std 3	4.076	131263	NA
Std 4	5.706	182542	NA
Trial # 1	NA	118551	3.707
Trial # 2	NA	132259	4.132
Trial # 4	NA	37811	1.204
Trial #5	NA	36312	1.158

* Correlation coefficient = 0.99997

(38)

SLI Study No. 3596.4

Chemistry Table 2

Standard Curve and Sample Analysis Values for Exposure #1

	Theoretical Conc.		Analytical
Sample No.	(mg/L)	Peak Area	Chamber Conc.
			(mg/L)
Std 1	1.888	47622	NA
Std 2	3.776	114022	NA
Std 3	5.664	169206	NA
Std 4	7.552	225528	NA
Std 5	9.440	251583	NA
#1	NA	111887	3.857
#2	NA	107931	3.714
#3	NA	90648	3.085
#4	NA	93185	3.178
#5	NA	92333	3.147
#6	NA	89526	3.045
#7	NA	94131	3.212
#8	NA	97391	3.330
#9	NA	91642	3.121
#10	NA	102623	3.521
#11	NA	100109	3.429

* Correlation coefficient = 0.991

(39)

SLI Study No. 3596.4

APPENDIX C

Individual Aerosol Generation and Chamber Environmental Data

(40)

SLI Study No. 3596.4

3.27 mg/L Exposure Level

(41)

SLI Study No. 3596.4

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS CHAMBER ENVIRONMENTAL DATA EXPOSURE: 3.27 MG/L

TIME	TEMPERATURE	RELATIVE HUMIDITY	OXYGEN CONTENT
(MIN.)	(°F)	(%)	(%)
0	72.6	69.3	20.9
30	72.8	65.7	20.9
60	72.7	67.6	20.9
90	72.9	68.0	20.9
120	73.4	66.7	20.9
150	73.1	67.5	20.9
180	73.5	67.6	20.9
210	73.5	67.7	20.9
240	73.7	67.3	20.9

(42)

SLI Study No. 3596.4

			Mean		Time
		Aerosol	Concentration	Interval	Weighted
Sample	Sample	Concentration	Per Interval	Length	Concentration
No.	Time (min.)	(mg/L)	(mg/L)	(min.)	Per Interval
1	0	3.86			
			3.79	14.00	52.99
2	14	3.71			
			3.40	7.00	23.80
3	21	3.09			
			3.14	9.00	28.22
4	30	3.18			
			3.17	30.00	94.95
5	60	3.15			
			3.10	30.00	93.00
6	90	3.05			
			3.13	30.00	93.90
7	120	3.21			
_			3.27	30.00	98.10
8	150	3.33			
_			3.23	30.00	96.75
9	180	3.12			
10	040	0.50	3.32	30.00	99.60
10	210	3.52	o (7		
	0.40	0.40	3.47	30.00	104.10
11 TOTAL	240	3.42		240.00	705 14
					785.41
			CONCENTRATION	N (IVIG/L)	3.27

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS TIME WEIGHTED ANALYTICAL CONCENTRATION ANALYTICAL EXPOSURE: 3.27 MG/L

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: A ANALYTICAL EXPOSURE: 3.27 MG/L

	Effective					
	Cutoff	Filter W	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	102.4	102.4	0.0	0.0	100.0
2	6.11	102.7	102.9	0.2	5.4	94.6
3	3.70	102.7	103.3	0.6	16.2	78.4
4	2.22	103.2	104.7	1.5	40.5	37.8
5	1.39	103.6	104.6	1.0	27.0	10.8
6	0.79	104.4	104.8	0.4	10.8	0.0
7	0.50	103.4	103.4	0.0	0.0	0.0
Filter	-	102.6	102.6	0.0	0.0	
	Total of Difference Weights:					

Mass Median Aerodynamic Diameter =	2.6 microns
Geometric Standard Deviation =	1.67
Percentage ≤ 4.0 microns =	80 %

SLI Study No. 3596.4

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: B ANALYTICAL EXPOSURE: 3.27 MG/L

	Effective					
	Cutoff	Filter W	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	103.0	103.0	0.0	0.0	100.0
2	6.11	103.5	103.9	0.4	8.7	91.3
3	3.70	103.1	104.0	0.9	19.6	71.7
4	2.22	103.8	105.5	1.7	37.0	34.8
5	1.39	103.3	104.4	1.1	23.9	10.9
6	0.79	103.5	103.8	0.3	6.5	4.3
7	0.50	102.7	102.8	0.1	2.2	2.2
Filter	-	103.1	103.2	0.1	2.2	
		Total of Differ	Total of Difference Weights:			

Mass Median Aerodynamic Diameter =	2.6 microns
Geometric Standard Deviation =	2.00

Percentage \leq 4.0 microns = 74 %

297

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: C ANALYTICAL EXPOSURE: 3.27 MG/L

	Effective					
	Cutoff	Filter We	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	103.4	103.4	0.0	0.0	100.0
2	6.11	103.5	103.8	0.3	7.5	92.5
3	3.70	103.3	104.1	0.8	20.0	72.5
4	2.22	103.7	105.1	1.4	35.0	37.5
5	1.39	103.2	104.1	0.9	22.5	15.0
6	0.79	103.4	103.9	0.5	12.5	2.5
7	0.50	103.3	103.4	0.1	2.5	0.0
Filter	-	104.2	104.2	0.0	0.0	
		Total of Differ	ence Weights:	4.0		

Geometric Standard Deviation =

1.82 76 %

2.6 microns

Percentage ≤ 4.0 microns =

(46)

SLI Study No. 3596.4

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA

	Effective Cutoff	Cumulative %			
Stage	Diameter	Sample A	Sample B	Sample C	
1	10.00	100.0	100.0	100.0	
2	6.11	94.6	91.3	92.5	
3	3.70	78.4	71.7	72.5	
4	2.22	37.8	34.8	37.5	
5	1.39	10.8	10.9	15.0	
6	0.79	0.0	4.3	2.5	
7	0.50	0.0	2.2	0.0	
					Mean
Mass Median Aerodynamic Diameter		2.6	2.6	2.6	2.6
Geometric	Standard Deviation	1.67	2.00	1.82	1.83
Percentage	\leq 4.0 microns	80	74	76	77

ANALYTICAL EXPOSURE: 3.27 MG/L

(47)

SLI Study No. 3596.4

APPENDIX D

SLI Personnel Responsibilities

(48)

SLI Study No. 3596.4

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LAGT	Study Director/Director, Acute Toxicologist
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
M. Gardner Clemons, B.A.	Manager of Analytical Chemistry and Pharmacy
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kevin V. Weitzel, A.S.	Primary Technician/Inhalation Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

A DERMAL SENSITIZATION STUDY IN GUINEA PIGS WITH SPRAY--ALPHA MODIFIED BUEHLER DESIGN

FINAL REPORT

OPPTS Guidelines

870.2600

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.7

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 41

(2)

SLI Study No. 3596.7

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: ______Date: _____

Title

Signature

(3)

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792) with the following exception:

The dose preparations used during the range-finding study were not analyzed to confirm test article concentration, stability or homogeneity.

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

09/03/02 Date

(4)

SLI Study No. 3596.7

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Date
04/25/02
06/06/02
06/21/02
09/01/02
09/01/02
09/01/02
09/03/02

Reports to Study Director and Management 06/06/02, 09/01/02, 09/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Rebecca A. Young / / / Quality Assurance Team Leader

Omo

Anita M. Bosau, RQAP-GLP

9/3/02 Date ___

Date 9/3/02

(5)

SLI Study No. 3596.7

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT4	ŀ
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	5
6. SUMMARY	,
7. INTRODUCTION8	3
8. MATERIALS AND METHODS8	3
9. EXPERIMENTAL PROCEDURES11	I
10. ANALYSIS OF DATA13	3
11. MAINTENANCE OF RAW DATA AND RECORDS13	3
12. RESULTS	3
13. CONCLUSION14	ŀ
14. REPORT REVIEW14	ŀ
15. REFERENCES	5

(6)

SLI Study No. 3596.7

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

	Individual Induction Data (SprayAlpha) Individual Challenge Data (SprayAlpha)	
<u>Ap</u>	pendices	
A.	Topical Range-Finding Study	. 19
В.	Dermal Grading System	.23
C.	Individual Body Weight Data	.27
D.	HCA Historical Control Data	. 30
E.	SLI Personnel Responsibilities	.40

6. SUMMARY

The dermal sensitization potential of Spray–Alpha was evaluated in Hartleyderived albino guinea pigs. Ten male and ten female guinea pigs were topically treated with 100% Spray-Alpha, once per week, for three consecutive weeks. Following an approximate two-week rest period, a challenge was performed whereby the twenty test and ten previously untreated (naive) challenge control guinea pigs were topically treated with 100% Spray-Alpha. Challenge responses in the test animals were compared with those of the challenge control animals.

6.1. Spray--Alpha

Following challenge with 100% Spray-Alpha, dermal reactions in the test and challenge control animals were limited to scores of 0. Group mean dermal scores were noted to be the same in the test animals as compared with the challenge control animals.

6.2. HCA

Using α -Hexylcinnamaldehyde (HCA) as a positive control, Springborn Laboratories, Inc., Spencerville, Ohio, has completed a study during the past six months which provided historical control data for contact sensitization to this agent utilizing the test system described herein (Modified Buehler Design). Following induction at 5% w/v HCA in ethanol and challenge at levels of 2.5% and 1% w/v HCA in acetone, a contact sensitization response was observed, thereby demonstrating the susceptibility of the test system to this sensitizing agent.

Based on the results of this study, Spray--Alpha is not considered to be a contact sensitizer in guinea pigs. The results of the HCA historical control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers.

7. INTRODUCTION

This study was performed to assess the dermal sensitization potential (delayed contact hypersensitivity) of Spray-Alpha in Hartley-derived albino guinea pigs when administered by multiple topical applications. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2600, Skin Sensitization, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 30, 2002 (GLP initiation date). The in-life phase of the main sensitization study was initiated with test article administration on June 13, 2002 (day 0), and concluded with final scoring on July 12, 2002.

Prior to initiation of the main sensitization study, a topical range-finding study was conducted in guinea pigs to aid in the selection of dosage levels. The in-life phase of the range-finding study was initiated with test article administration on June 10, 2002, and concluded on June 12, 2002. The experimental methods and results of the range-finding study are included in Appendix A.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Alpha ^a	S02.001.3596	Light amber liquid	05/13/02	None Provided
Ingredients ^b Herbicide: Fuete-SL Lot No.: 02-01-02				None Provided
Surfactant: Cosmo Flux-411F Lot No.: 244301				10/2003

^aSample pooled at SLI from five different mixes of Spray--Alpha (top/middle/bottom). ^bIngredients used in the five Spray--Alpha mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition,

stability and method of synthesis of the test material according to 40 CFR 160.105, 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.1.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was utilized at 100% (induction and challenge). The test article was dispensed fresh on each day of dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hartley-derived albino guinea pigs were received from Hilltop Lab Animals, Inc., Scottdale, PA. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 63-74°F (17-23°C) and 48-82%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Guinea Pig Chow #5026 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 7 weeks of age and weighed 375-458 g on the day prior to Induction 1 dosing. The female animals were approximately 8 weeks of age and weighed 346-389 g on the day prior to Induction 1 dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Study Design

This study consisted of a topical range-finding group, a test group and a challenge control group [2]. A rechallenge control group was maintained on this study; however, the rechallenge procedure was not required since the challenge results were definitive.

9.2. Sensitization Study

9.2.1. Preliminary Procedures

On the day prior to each dose administration, the guinea pigs had the hair removed with a small animal clipper. Care was taken to avoid abrading the skin.

9.2.2. Dosing

A dose of 0.3 mL of the test article was placed on a 25 mm Hilltop chamber backed by adhesive tape (occlusive patch). The chambers were then applied to the clipped surface as quickly as possible.

Following chamber application, the trunk of the animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chamber and the animal was returned to its cage.

9.2.2.1. Induction

On the day prior to the first induction dose administration (day -1), all test and control animals were weighed and the hair was removed from the left side of the test animals. On the day following clipping (day 0), chambers were applied as follows:

		Induction	Concentration	Test Site	No. of	f Animals
Group	Material	No.	(%)	No.	Male	Female
Test	Spray	1	100 ^a	1	10	10
	Alpha	2	100 ^a	1		
	•	3	100 ^a	1		

^aPooled test article.

The induction procedure was repeated on study day 7 and on study day 14 so that a total of three consecutive induction exposures were made to the test animals.

9.2.2.2. Challenge

On the day prior to challenge dose administration, the test and challenge control animals were weighed and the hair was removed from the right side of the animals. On the day following clipping (day 27), chambers were applied as follows:

		Concentration	Test Site	<u>No. of</u>	f Animals
Group	Material	(%)	No.	Male	Female
Test	SprayAlpha	100 ^a	2	10	10
Challenge Control	SprayAlpha	100 ^a	2	5	5

^aPooled test article.

9.2.3. Test Article Removal

Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened in deionized water, followed by dry gauze, to remove test article residue. The animals were then returned to their cages.

9.2.4. Dermal Observations

The test sites were graded for irritation at approximately 24 and 48 hours following chamber application (induction) or chamber removal (challenge) using the Dermal Grading System presented in Appendix B.

9.2.5. Clinical Observations

Any unusual observations and mortality were recorded. The animals were observed for general health/mortality twice daily, once in the morning and once in the afternoon.

9.2.6. Body Weights

Individual body weights were obtained for all sensitization study animals on the day prior to the first induction (day -1) and for the appropriate test and challenge control animals on the day prior to challenge dosing.

9.2.7. Scheduled Euthanasia

All sensitization study animals were euthanized by carbon dioxide inhalation following each animal's final scoring interval. Gross necropsy examinations were not required for these animals.

9.3. Protocol Deviations

The animal room temperature and relative humidity ranges $[63-74^{\circ}F (17-23^{\circ}C)]$ and 48-82%] exceeded the preferred ranges $[63-73^{\circ}F (17-23^{\circ}C)]$ and 30-70%, respectively] but were corrected on the same day. These occurrences were considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

The sensitization potential of the test article was based on the dermal responses observed on the test and control animals at challenge. Generally, dermal scores of ≥ 1 in the test animals with scores of 0 to \pm noted in the controls are considered indicative of sensitization. Dermal scores of 1 in both the test and control animals are generally considered equivocal unless a higher dermal response (\ge grade 2) is noted in the test animals. Group mean dermal scores were calculated for challenge.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Topical Range-Finding Study

Individual Topical Range-Finding Data: Appendix A

The results of the range-finding study indicated that a test article concentration of 100% was considered appropriate for induction and challenge since it was the highest possible concentration which was nonirritating.

12.2. Sensitization Study

Individual Data: Tables 1-2

Following challenge with 100% Spray-Alpha, dermal reactions in the test and challenge control animals were limited to scores of 0. Group mean dermal scores were noted to be the same in the test animals as compared with the challenge control animals.

(14)

SLI Study No. 3596.7

12.3. Clinical Observations/Body Weights

Individual Body Weight Data: Appendix C

The sensitization study animals gained weight during the test period and generally appeared in good health.

12.4. Historical Control

HCA Historical Control Data: Appendix D

Using α -Hexylcinnamaldehyde (HCA) as a positive control, Springborn Laboratories, Inc., Spencerville, Ohio, has completed a study during the past six months which provided historical control data for contact sensitization to this agent utilizing the test system described herein (Modified Buehler Design). Following induction at 5% w/v HCA in ethanol and challenge at levels of 2.5% and 1% w/v HCA in acetone, a contact sensitization response was observed, thereby demonstrating the susceptibility of the test system to this sensitizing agent.

13. CONCLUSION

Based on the results of this study, Spray--Alpha is not considered to be a contact sensitizer in guinea pigs. The results of the HCA historical control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers.

Kimberly L. Bonnette, M.S., LATG Study Director

Date

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S. Associate Toxicologist

413102 Date

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. E. V. Buehler, Delayed Contact Hypersensitivity in the Guinea Pig, Arch. Dermat., <u>91</u>:171-177, 1965.

ш	
G	
Ā	
Δ.	

TABLE 1 SLI STUDY NO.: 3596.7 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS CLIENT: INL/A, U.S. DEPARTMENT OF STATE INDIVIDUAL INDUCTION DATA (SPRAY--ALPHA)

	Animal No /		1002 ^a	1000 ² a	1000/a	1000/a	o/ a
Group	Sex	24 Hr	48 Hr	24 Hr	48 Hr	24 Hr	,0 48 Hr
Test	G8143/M	0	0	0	0	0	0
	G8144/M	0	0	0	0	0	0
	G8145/M	0	0	0	0	0	0
	G8146/M	0	0	0	0	0	0
	G8147/M	0	0	0	0	0	0
	G8148/M	0	0	0	0	0	0
	G8149/M	0	0	0	0	0	0
	G8150/M	0	0	0	0	0	0
	G8151/M	0	0	0	0	0	0
	G8152/M	0	0	0	0	0	0
	G8270/F	0	0	0	0	0	0
	G8271/F	0	0	0	0	0	0
	G8272/F	0	0	0	0	0	0
	G8273/F	0	0	0	0	0	0
	G8274/F	0	0	0	0	0	0
	G8275/F	0	0	0	0	0	0
	G8276/F	0	0	0	0	0	0
	G8277/F	0	0	0	0	0	0
	G8278/F	0	0	0	0	0	0
	G8279/F	0	0	0	0	0	0

(16)

Animal No./ Animal No./ Group Sex Test G8143/M G8144/M G8144/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8145/M G8150/M G8150/M G8150/M G8270/F G8271/F G8274/F G8274/F G8274/F		
	Dermal Scores	
	24 Hr	48 Hr
	0	0
G8145/M G8146/M G8146/M G8149/M G8149/M G8150/M G8150/M G8152/M G8271/F G8277/F G8277/F G8277/F G8277/F	0	0
G8146/M G8147/M G8147/M G8149/M G8150/M G8150/M G8151/M G8270/F G8277/F G8277/F G8277/F G8277/F	0	0
G8147/M G8148/M ^b G8149/M G8150/M G8151/M G8151/M G8271/F G8277/F G8277/F G8277/F	0	0
G8148/M ^b G8149/M G8150/M G8151/M G8151/M G8271/F G8271/F G8271/F G8271/F G8274/F	0	0
G8149/M G8150/M G8151/M G8152/M G8270/F G8271/F G8273/F G8273/F G8274/F	0	0
G8150/M G8151/M G8152/M G8270/F G8271/F G8273/F G8273/F G8274/F	0	0
G8151/M G8152/M G8270/F G8271/F G8272/F G8273/F G8274/F	0	0
G8152/M G8270/F G8271/F G8272/F G8273/F G8274/F	0	0
G8270/F G8271/F G8272/F G8273/F G8274/F	0	0
G8271/F G8272/F G8273/F G8274/F	0	0
G8272/F G8273/F G8274/F	0	0
G8273/F G8274/F	0	0
G8274/F	0	0
	0	0
G82/5/F	0	0
G8276/F	0	0
G8277/F	0	0
G8278/F	0	0
G8279/F	0	0
Mean	0.0	0.0
Notes: See Appendix B for definition of codes.		

(17)

^aPooled test article ^bAnimal found out of binding at the time of patch removal.

SLI STUDY NO.: 3596.7 CLIENT: INL/A, U.S. DEPARTMENT

PAGE 2

INDIVIDUAL CHALLENGE DAT/	(SPRAYALPHA)
IT OF STATE	

		Derm	Dermal Scores
	Animal No./ Sex	24 Hr	100% 48 Hr
Challenge Control	G8153/M	0	0
	G8154/M	0	0
	G8155/M	0	0
	G8156/M	0	0
	G8157/M	0 ^{1T}	0
	G8280/F	0	0
	G8281/F	0	0
	G8282/F	0 ^{1T}	0
	G8283/F	0	0
	G8284/F	0	
	Mean	0.0	0.0
endix B for cle.	Notes: See Appendix B for definition of codes. ^a Pooled test article.		

Annex 56-B

(18)

(19)

SLI Study No. 3596.7

APPENDIX A

Topical Range-Finding Study

(20)

SLI Study No. 3596.7

1. TOPICAL RANGE-FINDING STUDY

This appendix provides the experimental procedures and results of a topical range-finding study in guinea pigs with Spray--Alpha. The procedures for animal husbandry were similar to those described for the main sensitization study animals. The male animals were approximately 7 weeks of age and weighed 405-458 g; the female animals were approximately 11 weeks of age and weighed 480-481 g on the day prior to dosing.

1.1. Method of Test Article Preparation

The test article was utilized at 100% and at 75%, 50% and 25% w/v in deionized for the range-finding study. The test article was prepared and dispensed fresh on the day of dosing. The dosing preparations were stirred continuously during dosing.

1.2. Dosing

On the day prior to dose administration, four topical range-finding guinea pigs were weighed and the hair removed from the right and left side of the animals with a small animal clipper. Care was taken to avoid abrading the skin during clipping procedures.

On the following day, four concentrations of the test article were prepared and each concentration was applied to the clipped area of each topical range-finding animal as indicated below:

		Concentration	Test Site	Amount	
Group	Material	(%)	No.	Applied	Patch Design ^a
Topical	Spray	100 ^b	1	0.3 mL	25 mm Hilltop Chamber
Range- Finding	Alpha	75 ^{b, c}	2	0.3 mL	25 mm Hilltop Chamber
		50 ^{b, c}	3	0.3 mL	25 mm Hilltop Chamber
		25 ^{b, c}	4	0.3 mL	25 mm Hilltop Chamber

^aOcclusive patch.

^bPooled test article

^cThe vehicle was deionized water.

The chambers were applied to the clipped surface as quickly as possible. The trunk of the animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chambers and the animal was returned to its cage.

Approximately six hours after chamber application, the binding materials were removed. The test sites were then wiped with gauze moistened in deionized water, followed by dry gauze, to remove test article residue and the animals returned to their cages.

1.3. Dermal Observations

The test sites of the topical range-finding animals were graded for irritation at approximately 24 and 48 hours following chamber application using the Dermal Grading System in Appendix B.

1.4. Clinical Observations

Any unusual observations and mortality were recorded. The topical range-finding animals were observed for general health/mortality twice daily, once in the morning and once in the afternoon.

1.5. Body Weights

Individual body weights were obtained for the topical range-finding animals on the day prior to dosing.

1.6. Scheduled Euthanasia

Following the 48-hour scoring interval, all topical range-finding animals were euthanized by carbon dioxide inhalation. Gross necropsy examinations were not required for these animals.

1.7. Results

The results of the range-finding study indicated that a test article concentration of 100% was considered appropriate for induction and challenge since it was the highest possible concentration which was nonirritating.

PAGE 1

A DERMAL SENSITIZATION STUDY IN GUINEA PIGS TOPICAL RANGE-FINDING DATA (SPRAY--ALPHA) SLI STUDY NO.: 3596.7 CLIENT: INL/A, U.S. DEPARTMENT OF STATE

				R	ange-Finding	Range-Finding Dermal Scores	res		
	Animal No./Sex	10	100% ^a	75	75% ^{a,b}	20	50% ^{a, b}	25	25% ^{a,b}
Group	Body Weight (g)	24 Hr	48 Hr	24 Hr	48 Hr	24 Hr	48 Hr	24 Hr	48 Hr
Range-Finding	G7961/M 458	0	0	0	0	0	0	0	0
	G7969/M 405	0	0	0	0	0	0	0	0
	G7449/F 481	0	0	0	0	0	0	0	0
	G7477/F 480	0	0	0	0	0	0	0	0
Pooled test article The vehicle used was	^a Pooled test article ^b The vehicle used was deionized water. Motor: Soo Anonodix B for dofinition of ordin								

(22)

Annex 56-B

Annex 56-B

(23)

SLI Study No. 3596.7

APPENDIX B

Dermal Grading System

(24)

SLI Study No. 3596.7

DERMAL GRADING SYSTEM

ERYTHEMA AND ED	EMA OBSERVATIONS								
OBSERVATION	DEFINITION	CODE							
Erythema – Grade 0	No reaction	0							
Erythema – Grade ±	Slight patchy erythema	±							
Erythema – Grade 1	Slight, but confluent or moderate patchy erythema	1							
Erythema – Grade 2	Moderate, confluent erythema	2							
Erythema – Grade 3	Severe erythema with or without edema	3							
Maximized Grade 3	Notable dermal lesions	M – 3 (see below)							
Edema – Grade 1	Very slight edema (barely perceptible)	ED-1							
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	ED-2							
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	ED-3							
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	ED-4							
	s assigned to each test site. An edema code was assigne st site. If notable dermal lesion(s) (> grade 1) were pre								

was present at the test site. If notable dermal lesion(s) (> grade 1) were present, then the "Maximized Grade 3" was assigned to the test site in place of the erythema score and the type of the notable dermal lesion(s) was noted (e.g., $M-3^{ES-2}$).

DERMAL GRADING SYSTEM

NOTABLE DERMAL L	ESIONS	
OBSERVATION	CODE	DEFINITION
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.
Eschar – Grade 2	ES-2	> 10% < 25% of test site.
Eschar – Grade 3	ES-3	> 25% < 50% of test site.
Eschar – Grade 4	ES-4	> 50% of test site.
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.
Blanoning – Orade T		
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.
Blanching – Grade 4	BLA-4	> 50% of test site.
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.
Ulceration – Grade 2	U-2	> 10% < 25% of test site.
Ulceration – Grade 3	U-3	> 25% < 50% of test site.
Ulceration – Grade 4	U-4	> 50% of test site.
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (note color of necrosis).
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (Note color of necrosis).
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (Note color of necrosis).
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (Note color of necrosis).

(26)

SLI Study No. 3596.7

DERMAL GRADING SYSTEM

ADDITIONAL DERMAL F	FINDINGS	
OBSERVATION	DEFINITION	CODE
Desquamation	Characterized by scaling or flaking of dermal tissue or without denuded areas.	DES
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).	_
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3
Superficial Lightening - Grade 4	> 50% of test site	SL-4
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which do not interfere with the scoring of the test site.	IT

Annex 56-B

(27)

SLI Study No. 3596.7

APPENDIX C

Individual Body Weight Data

SLI STUDY NO.: 3596.7 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS CLIENT: INL/A, U.S. DEPARTMENT OF STATE INDIVIDUAL BODY WEIGHT DATA (SPRAY—ALPHA)

Group	Animal No./Sex	Day -1	Day 26
Test	G8143/M	434	661
	G8144/M	394	573
	G8145/M	375	586
	G8146/M	419	597
	G8147/M	443	708
	G8148/M	412	633
	G8149/M	458	655
	G8150/M	441	675
	G8151/M	375	576
	G8152/M	399	625
	G8270/F	373	546
	G8271/F	389	547
	G8272/F	350	498
	G8273/F	386	608
	G8274/F	349	514
	G8275/F	355	512
	G8276/F	389	560
	G8277/F	382	553
	G8278/F	387	564
	G8279/F	366	508

PAGE 1

(28)

PAGE 2		Day 26	690	678	576	617	583	480	520	497	581	511	-	1	1	1	1	1	1	1	1	I	llenge were conclusive.
A DERMAL SENSITIZATION STUDY IN GUINEA PIGS ATE INDIVIDUAL BODY WEIGHT DATA (SPRAY—ALPHA)	Body Weights	Day -1	378	398	383	436	391	357	368	356	358	378	431	430	415	439	436	366	346	365	364	376	^a A rechallenge control group was maintained on this study, but was not utilized since the results from challenge were conclusive.
SLI STUDY NO.: 3596.7 A DERN CLIENT: INL/A, U.S. DEPARTMENT OF STATE		Animal No./Sex	G8153/M	G8154/M	G8155/M	G8156/M	G8157/M	G8280/F	G8281/F	G8282/F	G8283/F	G8284/F	G8158/M	G8159/M	G8160/M	G8161/M	G8162/M	G8285/F	G8286/F	G8287/F	G8288/F	G8289/F	I group was maintained on this
SLI STUDY NO.: 359 CLIENT: INL/A, U.S.		Group	Challenge	Control									Rechallenge	Control ^a									^a A rechallenge control

(29)

Annex 56-B

(30)

SLI Study No. 3596.7

APPENDIX D

HCA Historical Control Data

(31)

SLI Study No. 3596.7

SPRINGBORN LABORATORIES, INC. MODIFIED BUEHLER HISTORICAL CONTROL DATA USING α-HEXYLCINNAMALDEHYDE (SLI Study No. 999.171)

(SLI Sludy NO. 999.1

1. OBJECTIVE

This study was performed to assess the dermal sensitization potential of α -Hexylcinnamaldehyde (HCA) when administered by multiple topical applications. This study may be used to provide information on the ability of the test system to detect potential contact sensitizers and to update the historical positive control of the testing facility. The protocol was signed by the Study Director on February 6, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on March 13, 2002, and concluded with final scoring on April 12, 2002.

2. TEST ARTICLE

The test article was received from the manufacturer, TCI America, and identified as follows:

Supplier's ID	Assigned SLI ID	Physical Description	Receipt Date	SLI Assigned Expiration Date
HCA Lot No.: GF01	S01.008.N	Clear yellow liquid	08/21/01	08/21/03

The bulk compound was stored desiccated, protected from light, at room temperature. The manufacturer provided a Certificate of Analysis for the test article which is presented as Attachment 1 of this Appendix.

The HCA was mixed with ethanol or acetone to produce the appropriate concentrations for dose administration. For the sensitization study, the test article concentrations utilized were 5% w/v in ethanol (induction) and 1% and 2.5% w/v in acetone (challenge).

(32)

SLI Study No. 3596.7

3. EXPERIMENTAL PROCEDURES [1]

Young adult Hartley-derived albino guinea pigs were received on March 7, 2002, from Hilltop Lab Animals, Inc., Scottdale, PA. The guinea pigs were uniquely identified by ear tag, individually housed in suspended stainless steel cages and received Purina Certified Guinea Pig Chow #5026 and water purified by reverse osmosis ad libitum. The animals were acclimated for a minimum of 5 days prior to experimental initiation. The male guinea pigs were approximately 7 weeks of age and weighed 370-463 g; the female guinea pigs were approximately 8 weeks of age and weighed 336-396 g on the day prior to Induction I dosing.

On the day prior to the first induction dose administration (day -1), the hair was removed from the left side of the twenty test animals. On the following day, 0.3 mL of 5% w/v HCA in ethanol was placed on a Hilltop chamber and applied to the clipped area of each animals back. The trunk of each animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chamber. Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened with deionized water, followed by dry gauze, to remove test article residue. The test sites were graded for irritation at approximately 24 and 48 hours following chamber application using the Dermal Grading System. The induction procedure was repeated on study day 7 and on study day 14 so that a total of three induction exposures were made to the animals.

On the day prior to challenge dose administration, the hair was removed from the right side of the twenty test and ten challenge control animals. On the following day (day 28), 0.3 mL of 1% and 2.5% w/v HCA in acetone was placed on a 25 mm Hilltop chamber and applied to the clipped area of each animals back. Wrapping, unwrapping and rinsing procedures were the same as those utilized for the induction phase. The test sites were graded for irritation at approximately 24 and 48 hours following chamber removal.

Any unusual observations and/or mortality were recorded. Body weights were recorded for the test, challenge control and rechallenge control animals on the day prior to first induction (day -1) and for the test and challenge control animals on the day prior to challenge dosing. All sensitization study animals were euthanized by carbon dioxide inhalation following each animal's final scoring interval. Gross necropsy examinations were not required for these animals.

Note: The temperature and relative humidity of the animal room [64-75°F (18-24°C)] exceeded the preferred ranges [63-73°F (17-23°C) and 30-70%] during

this study. These occurrences were considered to have had no adverse effect on the outcome of this study.

4. RESULTS

Individual Data: Tables 1-2

Following challenge with 2.5% w/v HCA in acetone, dermal scores of 1 were noted in 8/20 test animals at the 24-hour scoring interval. At the 48-hour scoring interval, dermal scores of 1 were noted in 4/20 test animals. Dermal reactions in the remaining test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be higher in the test animals as compared with the challenge control animals.

Following challenge with 1% w/v HCA in acetone, dermal scores of 1 were noted in 5/20 test animals at the 24-hour scoring interval. At the 48-hour scoring interval, dermal scores of 1 were noted in 2/20 test animals. Dermal reactions in the remaining test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be higher in the test animals as compared with the challenge control animals.

5. CONCLUSION

The results of this α -Hexylcinnamaldehyde positive control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers. Based on the results of this study, α -Hexylcinnamaldehyde is considered to be a contact sensitizer in guinea pigs.

6. REFERENCE

1. E.V. Buehler, <u>Occlusive Patch Method for Skin Sensitization in Guinea Pigs:</u> <u>The Buehler Method</u>, Fd. Chem. Toxic., Vol. 32, No. 2, pp. 97-101, 1994. PAGE 1

TABLE 1 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL INDUCTION DATA (α-HEXYLCINNAMALDEHYDE)

SLI HISTORICAL CONTROL STUDY NO.: 999.171

	Animal No./	5% ^a		5%	
Group	Sex	24 Hr	48 Hr	24 Hr	48 Hr
Test	G5787/M	1 ^{ED-1, BLA-1, DES}	$\pm^{BLA-1, DES,}$	2 ^{ED-2, BLA-1, SL-1, DES}	$2^{ ext{ED-2, BLA-1, DES}}$
	G5788/M	1 ED-1, DES	+ ^{DES}	2 ^{ED-1, DES}	2 ^{ED-1, DES}
	G5789/M	+ED-1, DES, IT	+ ^{DES}	2 ^{ED-1,} BLA-1, DES	2 ^{ED-1, BLA-1, DES}
	G5790/M			M-3 ^{ED-2, BLA-2, DES}	M-3 ^{ED-1, BLA-2, NEC -1} (BK), DES
	G5791/M	\pm ED-1, BLA-1, DES	\pm BLA-1, DES	2 ^{ED-2, BLA-1, DES}	2 ^{ED-1, BLA-1, DES}
	G5792/M	1 ED-1, BLA-1, DES	+BLA-1, DES	M-3 ^{ED-2, NEC-2} (BK), BLA-1, DES	M-3 ^{ED-1, BLA-1, ES-2, DES}
	G5793/M	1 ED-1, BLA-1, DES	\pm ED-1, BLA-1, DES	M-3 ^{ED-2, BLA-2, SL-1, DES}	M-3 ^{ED-1, BLA-2, DES}
	G5794/M	1 ^{ED-1, DES}	+ DES	2 ^{ED-2, ES-1, DES}	2 ^{ED-1,} ES-1, DES
	G5795/M	1 ^{ED-1, BLA-1, DES}	\pm ED-1, BLA-1, DES	2 ^{ED-2,} BLA-1, SL-3, DES	2 ^{ED-1,} BLA-1, DES
	G5796/M	2 ^{ED-1, BLA-1, DES}	1 ^{BLA-1, DES}	2 ^{ED-2, BLA-1, DES}	1 ED-1, BLA-1, DES
	G5894/F	±ED-1, DES, IT	± ^{DES}	2 ^{ED-2, DES}	1 ^{ED-1, DES}
	G5895/F	1 ED-1, DES, IT	± ^{DES}	2 ^{ED-2,} BLA-1, SL-1, DES	fED-1, BLA-1, DES
	G5896/F	± ^{DES, IT}	± ^{DES}	2 ^{ED-2,} BLA-1, ES-1, DES	M-3 ^{ED-2, ES-2, DES}
	G5897/F	1 ED-1, DES, IT	± ^{DES}	1 ^{ED-1, DES, IT}	± ^{DES}
	G5898/F	± ^{DES, IT}	± ^{DES}	± ^{DES, IT}	± ^{DES}
	G5899/F	± ^{DES, IT}	0 ^{DES}	2 ^{ED-2, BLA-1, DES}	2 ^{ED-1,} BLA-1, DES
	G5900/F	1 ^{ED-1, BLA-1, DES}	\pm ED-1, BLA-1, DES	2 ^{ED-2, BLA-1, DES}	2 ^{ED-2,} BLA-1, DES
	G5901/F	1 ^{ED-1, DES, IT}	± ^{DES}	2 ^{ED-2,} SL-4, DES, IT	2 ^{ED-2,} BLA-1, DES
	G5902/F	± ^{DES}	± ^{DES}	2 ^{ED-2,} SL-1, DES	2 ^{ED-1,} SL-1, DES
	G5903/F	0 ^{IT}	0	2 ^{ED-2, DES}	1 ED-1, DES

SLI Study No. 3596.7

(34)

TABLE 1 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL INDUCTION DATA (α-HEXYLCINNAMALDEHYDE)	Induction 3 Dermal Scores
SLI HISTORICAL CONTROL STUDY NO.: 999.171	

		Induction 3 Dermal Scores	es
	Animal No./	5% ^a	
Group	Sex	24 Hr	48 Hr
Test	G5787/M	2 ^{ED-2, DES}	2 ^{ED-1}
	G5788/M	$\overline{2}^{\text{ED-2, BLA-1}}$	$\overline{2}^{\text{ED-2, BLA-1}}$
	G5789/M	2 ^{ED-2}	2 ^{ED-1, SL-1}
	G5790/M	2 ^{ED-2} , SL-4, DES	2 ^{ED-1} , SL ²⁴
	G5791/M	2 ^{ED-2, DES}	2 ^{ED-1}
	G5792/M	2 ^{ED-2, SL-1, DES}	2 ^{ED-1, SL-1}
	G5793/M	2 ^{ED-2, DES}	2 ^{ED-1, DES}
	G5794/M	2 ^{ED-2, SL-2, DES}	2 ^{ED-2,} SL-2, DES
	G5795/M	2 ^{ED-2,} SL-2, DES	2 ^{ED-1, BLA-1, SL-2}
	G5796/M	2 ^{ED-2, SL-2, DES}	2 ^{ED-1,} BLA-1, SL-1
	G5894/F	1 ^{ED-1, DES}	1 ^{ED-1}
	G5895/F	1 ^{ED-1, DES}	1 ^{ED-1}
	G5896/F	2 ^{ED-2,} SL-1, DES, IT	2 ^{ED-2, SL-1}
	G5897/F	1 ^{ED-1, DES}	1 ^{ED-1}
	G5898/F	\pm ED-1, DES	±ED-1
	G5899/F	2 ^{ED-2,} SL-4, DES	2 ^{ED-2,} SL-4
	G5900/F	2 ^{ED-2} , SL-2, DES	2 ^{ED-1} , SL-2
	G5901/F	2 ^{ED-2} , SL-4, DES	2 ^{ED-1} , SL-4
	G5902/F	2 ^{ED-2} , SL-4, DES	2 ^{ED-1} , SL-4
	G5903/F	1 ED-1, BLA-1, DES	1 ED-1, BLA-1, SL-1
^a The vehicle was ethanol.	was ethanol.		

PAGE 2

SLI Study No. 3596.7

(35)

The vehicle was ethanol. Note: See Appendix B for definition of codes.

ш	
Ċ	
Ž	
۵	

TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)

SLI HISTORICAL CONTROL STUDY NO.: 999.171

			Dermal Scores		
	Animal No./	2.5%ª	a	1% ^a	
Group	Sex	24 Hr	48 Hr	24 Hr	48 Hr
Test	G5787/M	114	+1	1,1	=+1
	G5788/M	+1	+1	+1	+1
	G5789/M	+1	0	+1	0
	G5790/M	1 ^{ED-1}	-	-	-
	G5791/M	£	-	⊢ _+	⊑_+
	G5792/M	+1	0	+1	0
	G5793/M	+1	+1	+1	+1
	G5794/M	, -	~	-	+1
	G5795/M	£	+1	+1	0
	G5796/M	± ₊₁	+1	+1	+1
	G5894/F	+1	0	+1	0
	G5895/F	÷	+1	1	+1
	G5896/F	.	+1	+1	+1
	G5897/F	+1	0	⊑_+	0
	G5898/F	+1	+1	0	0
	G5899/F	, -	~	1	Ľ,
	G5900/F	E ₊₁	0	⊢ +1	0
	G5901/F	+1	0	+1	0
	G5902/F	+1	+1	+1	0
	G5903/F	+1	+1	+1	0
	Mean	0.7	0.5	0.0	0.3

Notes: For the purpose of calculation, $\pm = 0.5$. See Appendix B for definition of codes.

(36)

PAGE 2			48 Hr	0	0	=+	0	0	0	0	0	0	0	0.1	
		1% ^a	24 Hr	0,1	0 ¹¹	<u> </u>	0	0,1	0 ^{1T}	0 ^{1T}	0 ^{1T}	0	0 ^{1T}	0.1	
TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)	Dermal Scores	6 ^a	48 Hr	0	0	0	0	0	0 ^{1T}	0	0	0	0 ^{1T}	0.0	ttion of codes.
TABLE 2 A DERMAL SENSITIZATION STUDY IN (INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)		2.5% ^a	24 Hr	0	0	0	0	0	0 ^{IT}	0 ^{IT}	0 ¹⁷	0	0 ^{1T}	0.0	See Appendix B for definit
		Animal No./	Sex	G5797/M	G5798/M	G5799/M	G5800/M	G5801/M	G5904/F	G5905/F	G5906/F	G5907/F	G5908/F	Mean	alculation, ± = 0.5.
SLI HISTORICAL CONTROL STUDY NO.: 999.171			Group	Challenge	1										^a The vehicle was acetone. Notes: For the purpose of calculation, $\pm = 0.5$. See Appendix B for definition of codes.

(37)

Annex 56-B

(38)

SLI Study No. 3596.7

ATTACHMENT 1

Certificate of Analysis (Provided by the Manufacturer)

Dow Study No. 021090

(39)

CERTIFICATE OF ANALYSIS

H0685 Lot# GF01 CAS# 101-86-0 ALPHA-N-HEXYLCINNAMALDEHYDE

Appearance:	Yellow clear liquid
SG(20/20):	0.96
n(20/D):	1.55
Assay(GC):	92%

9211N. Harborgate St. Portland, OR 97203 Phone: (503)283-1681 (800)423-8616 Fax: (503)283-1987

Annex 56-B

(40)

SLI Study No. 3596.7

APPENDIX E

SLI Personnel Responsibilities

(41)

SLI Study No. 3596.7

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Primary Technician/Supervisor of Acute Toxicology
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

A PRIMARY EYE IRRITATION STUDY IN RABBITS WITH SPRAY--ALPHA

FINAL REPORT

OPPTS Guideline

870.2400

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

August 28, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.5

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 25

SLI Study No. 3596.5 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: ______Date: _____

Title

Signature

AUG 1 6 2002

SLI Study No. 3596.5

(3)

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

M

Regers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 12 14 02

345

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	03/31/02
Ocular Observations	06/12/02
Data Audit	07/15/02
Draft Report Review	07/15/02
Protocol Amendment Review	07/25/02
Final Report Review	08/28/02

Reports to Study Director and Management

07/15/02, 08/28/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

mailer D. Massi

Jennifer D/McGue Quality Assurance Auditor

Date 8/28/02

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date _ <u> 8/28/02</u>

SLI Study No. 3596.5 (5)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS5
5. LIST OF TABLES AND APPENDICES6
6. SUMMARY
7. INTRODUCTION8
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES11
10. ANALYSIS OF DATA12
11. MAINTENANCE OF RAW DATA AND RECORDS12
12. RESULTS
13. CONCLUSION13
14. REPORT REVIEW13
15. REFERENCES14

SLI Study No. 3596.5	(6)
----------------------	-----

5. LIST OF TABLES AND APPENDICES

Tables

1.	Individual Ocular Irritation Scores (No Rinse Group)	15
<u>Ap</u>	pendices	
A.	Ocular Grading System	17
Β.	Ocular Evaluation Criteria	22
C.	SLI Personnel Responsibilities	24

(7)

6. SUMMARY

The potential irritant and/or corrosive effects of Spray--Alpha were evaluated on the eyes of New Zealand White rabbits. Each of three rabbits received a 0.1 mL dose of the test article in the conjunctival sac of the right eye. The contralateral eye of each animal remained untreated and served as a control. Test and control eyes were examined for signs of irritation for up to 7 days following dosing.

Exposure to the test article produced conjunctivitis (redness, swelling and discharge) in 3/3 test eyes at the 1-hour scoring interval. The conjunctival irritation resolved completely in all test eyes by study day 7. An additional ocular finding of slight dulling of normal luster of the cornea was noted in 2/3 test eyes.

Based on the no rinse group, Spray--Alpha is considered to be a mild irritant to the ocular tissue of the rabbit.

(8)

7. INTRODUCTION

This study was performed to assess the irritant and/or corrosive effects of Spray--Alpha in New Zealand White rabbits when administered by a single ocular dose. This study was intended to provide information on the potential health hazards of the test article with respect to ocular exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2400, Acute Eye Irritation, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 30, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 11, 2002 (day 0), and concluded with final scoring on June 18, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's	Assigned	Physical	Receipt	Expiration
ID	SLĪ ID	Description	Date	Date
Spray—Alpha ^a	S02.001.3596	Light amber	05/13/02	None
		liquid		Provided
Ingredients ^b				
Herbicide:Fuete-SL				None
Lot No.: 02-01-02				Provided
Surfactant: Cosmo Flux-411F				10/2003
Lot No.: 244301				

^aSample pooled at SLI from five different mixes of Spray --Alpha (top/middle/bottom). ^bIngredients used in the five Spray--Alpha mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.1.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

(9)

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor at the completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, New Zealand White rabbits were received from Myrtle's Rabbitry, Thompson Station, TN. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-74°F (22-23°C) and 41-75%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

(10)

8.5.3. Food

PMI Certified Rabbit Chow #5322 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. The male animals were approximately 16 weeks of age and weighed 3.6 kg prior to dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Examination

On day 0 prior to dosing, both eyes of each animal provisionally selected for test use were examined macroscopically for ocular irritation with the aid of an auxiliary light source. In addition, the corneal surface was examined using fluorescein sodium dye. One drop of a fluorescein/physiological saline mixture was gently dropped onto the superior sclera of each eye. Following an approximate 15 second exposure, the eyes were thoroughly rinsed with physiological saline. The corneal surface was then examined for dye retention under a long-wave UV light source. Animals exhibiting ocular irritation, preexisting corneal injury or fluorescein dye retention were not used on study. All animals found to be acceptable for test use were returned to their cages until dosing.

(11)

9.2. Dosing

A minimum of one hour after preliminary ocular examination, the test article was instilled as follows:

	Concentration		No. of Animals
Group	(%)	Amount Instilled	Male
No Rinse	100 ^a	0.1 mL	3

^aPooled test article.

The test article was instilled into the conjunctival sac of the right eye of each animal after gently pulling the lower lid away from the eye. Following instillation, the eyelids were gently held together for approximately one second in order to limit test article loss and the animal was returned to its cage. The contralateral eye remained untreated to serve as a control.

9.3. Ocular Observations

The eyes were macroscopically examined with the aid of an auxiliary light source for signs of irritation at 1, 24, 48 and 72 hours and up to 7 days after dosing according to the Ocular Grading System presented in Appendix A which is based on Draize [2]. Following macroscopic observations at the 24-hour scoring interval, the fluorescein examination procedure was repeated on all test and control eyes and any residual test article was gently rinsed from the eye at this time (if possible) using physiological saline. If any fluorescein findings were

SLI Study No. 3596.5 (12)

noted at 24 hours, a fluorescein exam was conducted on the affected eyes at each subsequent interval until a negative response was obtained and/or until all corneal opacity had cleared, or as directed by the Study Director.

9.4. Clinical Observations

Any unusual observations and/or mortality were recorded. General health/mortality checks were performed twice daily (in the morning and in the afternoon).

9.5. Body Weights

Individual body weights were obtained for each animal prior to dosing on day 0.

9.6. Scheduled Euthanasia

Each animal was euthanized by an intravenous injection of sodium pentobarbital following its final observation interval. Gross necropsy examinations were not required for these animals.

9.7. Protocol Deviations

On one occasion, the animal room temperature and relative humidity ranges (71-74°F and 41-75%) exceeded the preferred ranges (63-73°F and 30-70% respectively) during this study. These occurrences are considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

For each group, the ocular irritation score for each parameter (i.e., corneal opacity x area, iritis and conjunctival redness + swelling + discharge) was multiplied by the appropriate factor (i.e., corneal injury x 5, iritis x 5, conjunctivitis x 2) and the totals added for each animal/interval. The group mean irritation score was then calculated for each scoring interval based on the number of animals initially dosed in each group. The calculated group mean ocular irritation scores for each interval were used to classify the test article according to the Ocular Evaluation Criteria [3] presented in Appendix B.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Ocular Observations

Individual Data: Table 1

Exposure to the test article produced conjunctivitis (redness, swelling and discharge) in 3/3 test eyes at the 1-hour scoring interval. The conjunctival irritation resolved completely in all test eyes by study day 7. An additional ocular finding of slight dulling of normal luster of the cornea was noted in 2/3 test eyes.

No corneal opacity, iritis or conjunctivitis was observed in the control eyes.

13. CONCLUSION

Based on the no rinse group, Spray--Alpha is considered to be a mild irritant to the ocular tissue of the rabbit.

Kimberly L.'Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S Associate Toxicologist

Date

Date 8/28/02

SLI Study No. 3596.5 (14)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and</u> <u>Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.
- 3. Kay, J.H. and Calandra, J.C., "Interpretation of Eye Irritation Tests", Journal of the Society of Cosmetic Chemists, 13, 281-289, 1962.

-	N STUDY IN RABBITS	RITATION SCORES	SROUP)
TABLE 1	A PRIMARY EYE IRRITATION STUDY IN RABBITS	STATE INDIVIDUAL OCULAR IR	(NO RINSE GROUP)
	SLI STUDY NO.: 3596.5	CLIENT: INL/A, US DEPARTMENT OF STATE INDIVIDUAL OCULAR IRRITATION SCORES	

Animal No./Sex			Cornea	nea	_	lris		Ŭ	Conjunctivae	tivae		Tes	Test Eye*	Cont	Control Eye*
Body Weight (kg)	Scoring Interval	0	A	0xAx5	_	lx5	۲	S	۵	(R+S+D)2	Total	Fluorescein Examination	Secondary Ocular Findings	Fluorescein Examination	Secondary Ocular Findings
R2097/M	1 Hour	0	0	0	0	0	2	2	-	10	10				
3.625	24 Hours	0	0	0	0	0	2	7	7	12	12	Ξ		Ξ	
	48 Hours	0	0	0	0	0	2	7	0	ω	ø				
	72 Hours	0	0	0	0	0	-	0	0	2	0				
	7 Days	0	0	0	0	0	0	0	0	0	0				
R2101/M	1 Hour	0	0	0	0	0	7	7	~	10	10		SDL		
3.583	24 Hours	0	0	0	0	0	2	7	0	8	ø	Ξ		Ξ	
	48 Hours	0	0	0	0	0	2	-	0	9	9				
	72 Hours	0	0	0	0	0	-	0	0	2	2				
	7 Days	0	0	0	0	0	0	0	0	0	0				
R2102/M	1 Hour	0	0	0	0	0	2	2	-	10	10		SDL		
3.617	24 Hours	0	0	0	0	0	2	7	0	8	ø	Ξ		Ξ	
	48 Hours	0	0	0	0	0	2	7	0	8	ø				
	72 Hours	0	0	0	0	0	-	0	0	2	2				
	7 Days	0	0	0	0	0	0	0	0	0	0				

(15)

357

*See Appendix A for definition of codes.

Scores	
Ocular	
Mean	

10.00	9.33	7.33	2.00	0.00	
,	ī	ı	ı		
1 Hour	24 Hours	48 Hours	72 Hours	7 Days	

Mild Irritant

Annex 56-B

(17)

APPENDIX A

Ocular Grading System

SLI Study No. 3596.5 (18)

OCULAR GRADING SYSTEM

(O) CORNEAL OPACITY—DEGREE OF DENSITY (AREA MOST DENSE TAKEN FOR READING)	
OBSERVATION	CODE
No ulceration or opacity	0
Scattered or diffuse areas of opacity (other than slight dulling of normal luster), details of iris clearly visible	1*
Easily discernible translucent area, details of iris slightly obscured	2*
Nacreous (opalescent) area, no details of iris visible, size of pupil barely discernible	3*
Opaque cornea, iris not discernible through opacity	4*

(A) AREA OF CORNEA INVOLVED (TOTAL AREA EXHIBITING ANY OPACITY, REGARDLESS OF DEGREE)	
OBSERVATION	CODE
No ulceration or opacity	0
One quarter (or less) but not zero	1
Greater than one quarter, but less than half	2
Greater than half, but less than three quarters	3
Greater than three quarters, up to whole area	4

Cornea Score = O x A x 5

Total Maximum = 80

(I) IRITIS	
OBSERVATION	CODE
Normal	0
Markedly deepened rugae (folds above normal), congestion, swelling, moderate circumcorneal hyperemia or injection, any or all of these or combination of any thereof, iris is still reacting to light (sluggish reaction is positive)	1*
No reaction to light, hemorrhage, gross destruction (any or all of these)	2*

Iris Score = I x 5

Total Maximum = 10

*Starred figures indicate positive effect.

(19)

OCULAR GRADING SYSTEM

(R) CONJUNCTIVAL REDNESS (REFERS TO PALPEBRAL AND BULBAR CONJUNCTIVAE EXCLUDING CORNEA AND IF	RIS)
OBSERVATION	CODE
Blood vessels normal	0
Some blood vessels definitely hyperemic (injected) above normal (slight erythema)	1
Diffuse, crimson color, individual vessels not easily discernible (moderate erythema)	
Diffuse beefy red (marked erythema)	3*

(S) CONJUNCTIVAL SWELLING (LIDS AND/OR NICTITATING MEMBRANE)	
OBSERVATION	CODE
No swelling	0
Any swelling above normal (includes nictitating membrane, slightly swollen)	1
Obvious swelling with partial eversion of lids	2*
Swelling with lids about half closed	3*
Swelling with lids more than half closed	4*

(D) CONJUNCTIVAL DISCHARGE	
OBSERVATION	CODE
No discharge	0
Any amount different from normal (does not include small amounts observed in inner canthus of normal animals)	1
Discharge with moistening of the lids and hairs just adjacent to lids	2
Discharge with moistening of the lids and hairs and considerable area around the eye	3

Conjunctival Score = (R + S + D) x 2

Total Maximum = 20

*Starred figures indicate positive effect.

(20)

OCULAR GRADING SYSTEM

CORNEAL NEOVASCU	LARIZAT	ION
OBSERVATION	CODE	DEFINITION
Neovascularization – Very Slight	VAS-1	Total area of vascularized corneal tissue is < 10% of corneal surface
Neovascularization – Mild	VAS-2	Total area of vascularized corneal tissue is > 10% but < 25% of corneal surface
Neovascularization – Moderate	VAS-3	Total area of vascularized corneal tissue is > 25% but < 50% of corneal surface
Neovascularization – Severe	VAS-4	Total area of vascularized corneal tissue is > 50% of corneal surface

SECONDARY OCULAR	FINDING	SS
OBSERVATION	CODE	DEFINITION
Sloughing of the corneal epithelium	SCE	Corneal epithelial tissue is observed to be peeling off the corneal surface.
Corneal bulging	CB	The entire corneal surface appears to be protruding outward further than normal.
Slight dulling of normal luster of the cornea	SDL	The normal shiny surface of the cornea has a slightly dulled appearance.
Raised area on the corneal surface	RAC	A defined area on the corneal surface that is raised above the rest of the cornea. This area is generally associated with neovascularization and has an off-white to yellow color.
Corneal edema	CE	The cornea has a swollen appearance.
Test article present in eye	TAE	Apparent residual test article is observed on the eye or in the conjunctival sac/inner canthus.
Observation confirmed by slit lamp	OCS	A slit lamp examination was performed to confirm the initial observation.
Corneal mineralization	СМ	Small white or off-white crystals that are observed in the corneal tissue.

(21)

OCULAR GRADING SYSTEM

FLUORESCEIN EXAMINATION OF CORNEA	
OBSERVATION	CODE
Fluorescein Dye Retention Fluorescein dye retention associated with the area of corneal opacity Fluorescein dye retention is not associated with any other finding	FAO FNF
Negative Results No fluorescein retention is observed	(-)
Secondary Ocular Findings Superficial mechanical abrasion to the cornea observed during the fluorescein examination period Fine stippling on the cornea observed during the fluorescein examination procedure	MI ST

POST-DOSE CLINICAL OBSERVATIONS	
OBSERVATION	CODE
Animal vocalized following dosing	VOC
Animal excessively pawed test eye following dosing	PAW
Animal exhibited excessive hyperactivity following dosing	HYP
Animal exhibited excessive head tilt following dosing	НТ
Animal exhibited excessive squinting of test eye following dosing	SQ

Annex 56-B

SLI Study No. 3596.5

(22)

APPENDIX B

Ocular Evaluation Criteria

(23)

Maximum Mean Score (Days 0-3)	Maximum Mean Score	Persistence of Individual Scores	Descriptive Rating and C	lass
	24 hours = 0	000163	Non-Irritating	1
0.00 – 0.49 24 hours > 0			Practically Non-irritating	2
0.50 0.40	24 hours = 0		Non-Irritating	1
0.50 – 2.49	24 hours > 0		Practically Non-irritating	2
2.50 – 14.99	48 hours = 0		Slight Irritant	3
2.50 - 14.99	48 hours > 0		Mild Irritant	4
15.00 – 24.99	72 hours = 0		Mild Irritant	4
15.00 - 24.99	72 hours > 0		Moderate Irritant	5
		> half of day 7 scores < 10	Moderate Irritant	5
05 00 40 00	7 day <u>< 2</u> 0	> half of day 7 scores > 10, but no score > 20	Moderate Irritant	5
25.00 – 49.99		> half of day 7 scores > 10, and any score > 20	Severe Irritant	6
	7 day > 20		Severe Irritant	6
		> half of day 7 scores <u><</u> 30	Severe Irritant	6
50.00 70.00	7 day <u><</u> 40	> half of day 7 scores > 30, but no score > 60	Severe Irritant	6
50.00 – 79.99		> half of day 7 scores > 30, and any score > 60	Very Severe Irritant	7
	7 day > 40		Very Severe Irritant	7
		> half of day 7 scores <u><</u> 60	Very Severe Irritant	7
80.00 – 99.99	7 day <u><</u> 80	> half of day 7 scores > 60, but no score > 100	Very Severe Irritant	7
		> half of day 7 scores > 60, and any score > 100	Extremely Severe Irritant	8
	7 day > 80		Extremely Severe Irritant	8
100.00 - 110.00	7 day <u><</u> 80		Very Severe Irritant	7
100.00 - 110.00	7 day > 80		Extremely Severe Irritant	8

OCULAR EVALUATION CRITERIA

Annex 56-B

SLI Study No. 3596.5

(24)

APPENDIX C

SLI Personnel Responsibilities

(25)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Christopher W. Wilson, B.S.	Associate Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kevin V. Weitzel, A.S.	Primary Technician/Inhalation Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

AN ACUTE ORAL TOXICITY STUDY IN RATS WITH SPRAY--ALPHA

FINAL REPORT

OPPTS Guideline

870.1100

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.2

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 22

SLI Study No. 3596.2 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent:	Date
----------------	------

Title

Signature

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

9 Date _

Date 12 40,00

(4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	03/31/02
Necropsy	06/18/02
Data Audit	07/16/02
Draft Report Review	07/16/02
Protocol Amendment Review	07/25/02
Final Report Review	09/03/02

Reports to Study Director and Management 07/16/02, 09/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

DM Drip

Jenhifer D. McGue Quality Assurance Auditor

alerico

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 9302

Date 9/3/02

SLI Study No. 3596.2	(5)
	(0)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES6
6. SUMMARY
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES11
10. ANALYSIS OF DATA12
11. MAINTENANCE OF RAW DATA AND RECORDS12
12. RESULTS
13. CONCLUSION
14. REPORT REVIEW13
15. REFERENCE

SLI Study No. 3596.2 (6)

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

2.	Individual Clinical Observations Individual Body Weights Individual Gross Necropsy Observations	17
<u>App</u>	pendix	

Α.	SLI Personnel Responsibilities	21	1
----	--------------------------------	----	---

6. SUMMARY

The single-dose oral toxicity of Spray--Alpha was evaluated in Sprague Dawley rats. A limit test was performed in which one group of five male and five female rats received a single oral administration of the test article at a dose of 5000 mg/kg body weight. Following dosing, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all limit test animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the limit test. No significant dinical abnormalities were observed during the study. Body weight gain was noted for all animals during the test period. No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute oral LD50 of Spray--Alpha was estimated to be greater than 5000 mg/kg in the rat.

(8)

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Alpha in Sprague Dawley rats when administered by gavage as a single oral dose. This study was intended to provide information on the potential health hazards of the test article with respect to oral exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1100, Acute Oral Toxicity, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 30, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 4, 2002 (day 0) and concluded with necropsy on June 18, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Alpha ^a	S02.001.3596	Light amber liquid	05/13/02	None provided
Ingredients ^b Herbicide:Fuete-SL Lot No.: 02-01-02				None Provided
Surfactant: Cosmo Flux-411F Lot No.: 244301				10/2003

^aSample pooled at SLI from five different mixes of Spray--Alpha (top/middle/bottom).

^bIngredients used in the five Spray--Alpha mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.1.

SLI Study No. 3596.2 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing. The density of the test article was determined to be 1.08 g/mL.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 61-74°F (16-23°C) and 35-61%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study (except during fasting). The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized (Alpha DS-10) random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 10 weeks of age and weighed 249-259 g prior to fasting. The female animals were approximately 12 weeks of age and weighed 218-242 g prior to fasting.

SLI Study No. 3596.2 (11)

9. EXPERIMENTAL PROCEDURES

9.1. Dosing

On day -1, the animals chosen for the limit test were weighed and fasted overnight. On day 0, the test article was administered orally as a single dose using a ball tipped stainless steel gavage needle attached to a syringe at the following level:

Dose Level	Dose Volume	Concentration	No. of Animals	
(mg/kg)	(mL/kg)	(mg/mL)	Male	Female
5000	4.63	1000 ^a	5	5
alad toot articla				

^aPooled test article.

Individual doses were calculated based on the animal's fasted (day 0) body weight. Animals were returned to ad libitum feeding after dosing.

9.2. Clinical Observations

The animals were observed for clinical abnormalities two times on study day 0 (post-dose) and daily thereafter (days 1-14). A general health/mortality check was performed twice daily (in the morning and in the afternoon).

9.3. Body Weights

Individual body weights were obtained for the animals prior to fasting (day -1), prior to dosing on day 0 and on days 7 and 14.

9.4. Gross Necropsy

All animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.5. Protocol Deviations

On one occasion, the animal room temperature range $(61-74^{\circ}F)$ exceeded the preferred range $(66-77^{\circ}F)$ during this study. This occurrence is considered to have had no adverse effect on the outcome of this study.

SLI Study No. 3596.2 (12)

10. ANALYSIS OF DATA

Data from the study were analyzed and an LD50 value estimated as follows:

< 50% Mortality: LD50 was estimated as greater than the administered dose.

= 50% Mortality: LD50 was estimated as equal to the administered dose.

> 50% Mortality: LD50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Mortality Individual Data: Table 1

No mortality occurred during the limit test.

12.2. Clinical Observations

Individual Data: Table 1

No significant clinical abnormalities were observed during the study.

12.3. Body Weight Data Individual Data: Table 2

Body weight gain was noted for all animals during the test period.

12.4. Gross Necropsy Individual Data: Table 3

No significant gross internal findings were observed at necropsy on study day 14.

13. CONCLUSION

Under the conditions of this test, the acute oral LD50 of Spray--Alpha was estimated to be greater than 5000 mg/kg in the rat.

Kimberly L. Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Date

Dawn D. Rodabaugh,

Associate Toxicologist

Date

(13)

SLI Study No. 3596.2 (14)

15. REFERENCE

1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.

STUDY NO.: 3596.2 1 NL/A U.S. DEPARTMENT OF STATE

TABLE 1

AN ACUTE ORAL TOXICITY STUDY IN RATS

TABLE 1

STUDY NO.: 3596.2 INL/A U.S. DEPARTMENT OF STATE

AN ACUTE ORAL TOXICITY STUDY IN RATS

SNO	Χ	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	đ	ď	ď	ď	Ъ	3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
OBSERVATI I NDI NGS)	DAY OF STUDY	345						R=RI GHT
JAL CLINICAL OBSERVA' (POSITIVE FINDINGS)	D	0 1 2						L=LEFT
I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)								P=PRESENT
								3=SEVERE
		SN	ANASI A	ANASI A	ANASI A	ANASI A	ANASI A	IT 2=MODERATE
000 MG/KG		OBSERVATI ONS	A5099 SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	A5123 SCHEDULED EUTHANASIA	A5111 SCHEDULED EUTHANASIA	A5107 SCHEDULED EUTHANASIA	GRADE CODE: 1=SLIGHT 2=MODERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
FEMALES 5000 MG/KG		FEMALE#	A5099 S	A5113 S	A5123 S	A5111 S	A5107 S	GRADE CODE:

(16)

STUDY NO.: 3596.2 INL/A U.S. DEPARTMENT OF STATE

TABLE 2

AN ACUTE ORAL TOXICITY STUDY IN RATS

DAY OF STUDY -1 0 7 14 AT DEATH (DAY) 258 234 289 325 259 234 289 325 249 228 301 314 255 227 296 340 254 231 296 340 255 227 296 340 254 231 292 313 254 231 296 340 254 231 296 340 254 231 296 340 255 227 296 340 254 231 292 313 255 231 296 319 4 3 9 6.3 13.4
--

STUDY NO.: 3596.2 INL/A U.S. DEPARTMENT OF STATE

TABLE 2

PAGE 2

AN ACUTE ORAL TOXICITY STUDY IN RATS

(CD AMC)
WET CHTS
RONV
T NDT VT DTAT

NDI VI DUAL BODY WEI GHTS (GRAMS)	rh (DAY)	238 235				
	14 AT DEATH	238 235	243 256	250	244 8. 6	5
	7	237 225	242	242	236 7. 0	5
	Y OF STUDY 0	1	211 216	221	$210 \\ 6.5$	3
	DAY 0 -1	218 219	230	242	226 9.9	5
MLES	ANI MAL#	A5113	A5111	A5107	MEAN S. D.	N

			FATE	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A
TABLE 3	AN ACUTE ORAL TOXICITY STUDY IN RATS	I NDI VI DUAL GROSS NECROPSY OBSERVATIONS	OF STUDY TH DAY OBSERVATION FATE	ALL TISSUES WITHIN NORMAL LIMITS	ALL TISSUES WITHIN NORMAL LIMITS
STATE			STUDY DAY	14	14
0F		5000 MG/KG	DAY OF S ANI MAL# DEATH	A5246 18-JUN-02	A5248 18-JUN-02
I NL/A U. S. DEPARTMENT		MALES	DAY C ANI MAL# DEAT	A5246	A5248

-	
PAGE	
_	

STUDY NO.: 3596.2

SCHEDULED EUTHANASI A SCHEDULED EUTHANASI A SCHEDULED EUTHANASI A

ALL TISSUES WITHIN NORMAL LIMITS ALL TISSUES WITHIN NORMAL LIMITS ALL TISSUES WITHIN NORMAL LIMITS

14 1414

18-JUN-02

A5256 A5259 A5260 ----

18-JUN-02 18-JUN-02

STUDY NO.: 3596.2 INL/A U.S. DEPARTMENT OF STATE

TABLE 3

PAGE 2

RAT	
IN	
STUDY	
ORAL TOXICITY STUDY IN RATS	
ORAL	
ACUTE	

AN ACUTE ORAL TOXICITY STUDY IN RATS		FATE	IN NORMAL LIMITS SCHEDULED EUTHANASIA				
AN	IND	0BSERVATI 0N	ALL TISSUES WITHIN NORMAL LIMITS				
		STUDY DAY	14	14	14	14	14
	5000 MG/KG	DAY OF DEATH	A5099 18-JUN-02	A5113 18-JUN-02	A5123 18- JUN- 02	18-JUN-02	18-JUN-02
	FEMALES	ANI MAL#	A5099	A5113	A5123	A5111	A5107

(20)

Annex 56-B

(21)

SLI Study No. 3596.2

APPENDIX A

SLI Personnel Responsibilities

Annex 56-B

(22)

SLI Study No. 3596.2

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Christopher W. Wilson, B.S.	Associate Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kevin V. Weitzel, A.S.	Primary Technician/Inhalation Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

A PRIMARY SKIN IRRITATION STUDY IN RABBITS WITH SPRAY--ALPHA

FINAL REPORT

OPPTS Guideline

870.2500

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.6

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 23

SLI Study No. 3596.6 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent:	Date	

Title

Signature

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

(3)

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers-Woolfolk

Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 12 Aug 02

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

<u>Phase</u>	Date
Protocol Review	03/31/02
Body Weights	06/06/02
Data Audit	07/15/02
Draft Report Review	07/15/02
Protocol Amendment Review	07/25/02
Final Report Review	09/03/02

Reports to Study Director and Management 07/15/02, 9/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Jerinifer DL/McGue Quality Assurance Auditor

Date 9

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date

SLI Study No. 3596.6 (5)
4. TABLE OF CONTENTS
1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES
6. SUMMARY
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES11
10. ANALYSIS OF DATA12
11. MAINTENANCE OF RAW DATA AND RECORDS
12. RESULTS
13. CONCLUSION13
14. REPORT REVIEW13
15. REFERENCES

SLI Study No. 3596.6	(6)
----------------------	-----

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

1.	Individual Dermal Irritation Scores	15
<u>Ap</u>	pendices	
A.	Macroscopic Dermal Grading System	16
В.	Dermal Evaluation Criteria	20
C.	SLI Personnel Responsibilities	22

6. SUMMARY

The potential irritant and/or corrosive effects of Spray--Alpha were evaluated on the skin of New Zealand White rabbits. Each of three rabbits received a 0.5 mL dose of the test article as a single dermal application. The dose was held in contact with the skin under a semi-occlusive binder for an exposure period of four hours. Following the exposure period, the binder was removed and the remaining test article was wiped from the skin using gauze moistened with deionized water followed by dry gauze. Test sites were subsequently examined and scored for dermal irritation for up to 7 days following patch application.

Exposure to the test article produced very slight erythema and very slight edema on 2/3 and 1/3 test sites, respectively, at the 1-hour scoring interval. The dermal irritation resolved on 2/3 test sites by the 24 hour scoring interval and the remaining test site by study day 7.

Under the conditions of the test, Spray--Alpha is considered to be a slight irritant to the skin of the rabbit. The calculated Primary Irritation Index for the test article was 0.50.

(8)

7. INTRODUCTION

This study was performed to assess the potential irritant and/or corrosive effects of Spray--Alpha in New Zealand White rabbits when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2500, Acute Dermal Irritation, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 30, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 6, 2002 (day 0) and concluded with final scoring on June 13, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Alpha ^a	S02.001.3596	Light amber liquid	05/13/02	None Provided
Ingredients ^b Herbicide:Fuete-SL Lot No.: 02-01-02				None Provided
Surfactant: Cosmo Flux-411F Lot No.: 244301				10/2003

^aSample pooled at SLI from five different mixes of Spray--Alpha (top/middle/bottom). ^bIngredients used in the five Spray--Alpha mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.1.

SLI Study No. 3596.6 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, New Zealand White rabbits were received from Myrtle's Rabbitry, Thompson Station, TN. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 70-74°F (21-23°C) and 42-75%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rabbit Chow #5322 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) were provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. The male animals were approximately 12 weeks of age and weighed 2.6-2.9 kg prior to dosing.

SLI Study No. 3596.6 (11)

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

On day -1, the animals chosen for use on the primary skin irritation study had the fur removed from the dorsal area of the trunk using an animal clipper. Care was taken to avoid abrading the skin during the clipping procedure.

9.2. Dosing

On the following day (day 0), the test article was applied to a small area of intact skin on each test animal (approximately 1 inch x 1 inch) as indicated below:

Concentration	Amount		No. of Animals
(%)	Applied	Patch Design	Male
100 ^a	0.5 mL	~1" x 1" square 4-ply gauze patch	3
		· · · · · ·	

^aPooled test article.

The test article was administered under the gauze patch. The gauze patch was held in contact with the skin at the cut edges with a nonirritating tape. Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area (semi-occlusive binding). The elastic wrap was then further secured with adhesive tape around the trunk at the cranial and caudal ends. After dosing, collars were placed on each animal and remained in place until removal on day 3. After a four-hour exposure period, the binding materials were removed from each animal and the corners of the test site delineated using a marker. Residual test article was removed using gauze moistened with deionized water, followed by dry gauze.

9.3. Dermal Observations

Animals were examined for signs of erythema and edema and the responses scored at 1 hour after patch removal and 24, 48 and 72 hours and up to 7 days after patch application according to the Macroscopic Dermal Grading System presented in Appendix A which is based on Draize [2]. The dermal test sites were reclipped as necessary to allow clear visualization of the skin.

9.4. Clinical Observations

Any unusual observations and/or mortality were recorded. General health/mortality checks were performed twice daily (in the morning and in the afternoon).

SLI Study No. 3596.6 (12)

9.5. Body Weights

Individual body weights were obtained for each animal prior to dosing on day 0.

9.6. Scheduled Euthanasia

Each animal was euthanized by an intravenous injection of sodium pentobarbital following its final scoring interval. Gross necropsy examinations were not required for these animals.

9.7. Protocol Deviations

On one occasion, the animal room temperature and relative humidity ranges (70-74°F and 42-75%, respectively) exceeded the preferred ranges (63-73°F and 30-70%, respectively) during this study. These occurrences are considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

The 1-, 24-, 48- and 72-hour erythema and edema scores for all animals were added and the total divided by the number of test sites x 4. The calculated Primary Irritation Index (P.I.I.) was classified according to the Dermal Evaluation Criteria [3] presented in Appendix B.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Dermal Observations

Individual Data: Table 1

Exposure to the test article produced very slight erythema and very slight edema on 2/3 and 1/3 test sites, respectively, at the 1-hour scoring interval. The dermal irritation resolved on 2/3 test sites by the 24 hour scoring interval and the remaining test site by study day 7.

(13)

13. CONCLUSION

Under the conditions of the test, Spray--Alpha is considered to be a slight irritant to the skin of the rabbit. The calculated Primary Irritation Index for the test article was 0.50.

Kimberly L. Bonnette, M.S., LATG Study Director

Date

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S.

Associate Toxicologist

131 DADate

SLI Study No. 3596.6 (14)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.
- 3. Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation: Human and Domestic Animals-Addendum 3 on Data Reporting, US EPA, 1988.

							(- /								
PAGE 1																
TABLE 1 A PRIMARY SKIN IRRITATION STUDY IN RABBITS INDIVIDUAL DERMAL IRRITATION SCORES (SPRAYALPHA)	Comments Edema	0	0	0	0	-	0	0	0	0	0	0	0	0		Primary Irritation Index
SLI STUDY NO.: 3596.6 CLIENT: INL/A, US DEPARTMENT OF STATE	Erythema	£	0	0	0	.	4	-	-	0	0	0	0	0	tion of codes.	
	Scoring Interval	1 Hour	24 Hours	48 Hours	72 Hours	1 Hour	24 Hours	48 Hours	72 Hours	7 Days	1 Hour	24 Hours	48 Hours	72 Hours	< A for definit	
SLI STUDY NO.: 3! CLIENT: INL/A, US	Animal No./Sex Body Weight (kg)	R2176/M	2.595			R2161/M	2.877				R2165/M	2.915			Note: See Appendix A for definition of codes.	

(15)

0.50 = Slight Irritant

SLI Study No. 3596.6 (16)

APPENDIX A

Macroscopic Dermal Grading System

(17)

MACROSCOPIC DERMAL GRADING SYSTEM

ERYTHEMA AND EDEMA OBSERVATIONS					
OBSERVATION	DEFINITION	CODE			
Erythema – Grade 0	No erythema	0			
Erythema – Grade 1	Very slight erythema (barely perceptible)	1			
Erythema – Grade 2	Well-defined erythema	2			
Erythema – Grade 3	Moderate to severe erythema	3			
Erythema – Grade 4	Severe erythema (beet redness)	4			
Maximized Grade 4	Notable dermal lesions (see below)	M – 4 (see below)			
Edema – Grade 0	No edema	0			
Edema – Grade 1	Very slight edema (barely perceptible)	1			
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	2			
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	3			
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	4			

NOTE: Each animal was assigned an erythema and edema score. The most severely affected area within the test site was graded. If eschar, blanching, ulceration and/or necrosis greater than grade 1 was observed, then the "Maximized Grade 4" was assigned to the test site in place of the erythema score and the type of notable dermal lesion(s) (e.g., eschar - grade 2, blanching - grade 3, ulceration - grade 4, etc.) was noted. The presence of any other dermal changes (e.g., desquamation, fissuring, eschar exfoliation, etc.) was also recorded.

(18)

MACROSCOPIC DERMAL GRADING SYSTEM

NOTABLE DERMAL L	ESIONS	
OBSERVATION	CODE	DEFINITION
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.
Eschar – Grade 2	ES-2	> 10% < 25% of test site.
Eschar – Grade 3	ES-3	> 25% < 50% of test site.
Eschar – Grade 4	ES-4	> 50% of test site.
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.
Blanching – Grade 4	BLA-4	> 50% of test site.
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.
Ulceration – Grade 2	U-2	> 10% < 25% of test site.
Ulceration – Grade 3	U-3	> 25% < 50% of test site.
Ulceration – Grade 4	U-4	> 50% of test site.
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (note color of necrosis).
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (note color of necrosis).
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (note color of necrosis).
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (note color of necrosis).

(19)

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL DERMAL	FINDINGS	
OBSERVATION	DEFINITION	CODE
Desquamation	Characterized by scaling or flaking of dermal tissue or without denuded areas.	DES
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).	
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3
Superficial Lightening - Grade 4	> 50% of test site	SL-4
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which does not interfere with the scoring of the test site.	IT

SLI Study No. 3596.6 (20)

APPENDIX B

Dermal Evaluation Criteria

(21)

DERMAL EVALUATION CRITERIA				
Primary Irritation Index (P.I.I.)	Irritation Rating			
0.00	Nonirritant			
0.01 - 1.99	Slight Irritant			
2.00 - 5.00	Moderate Irritant			
5.01 - 8.00	Severe Irritant			

SLI Study No. 3596.6 (22)

APPENDIX C

SLI Personnel Responsibilities

SLI Study No. 3596.6 (23)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Rusty E. Rush, M.S., LAT, DABT	Director, Neurotoxicity and Transgenics
Christopher W. Wilson, B.S.	Associate Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kathy A. Pugh, ALAT	Primary Technician/Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

PURITY ANALYSIS FOR GLYPHOSATE OF SPRAY--ALPHA (ACTIVE INGREDIENT)

FINAL REPORT

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

October 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.1

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 31

(2)

SLI Study No. 3596.1

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: _____ Date _____

Title

Signature

(3)

SEP 3 0 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792) with the following exception:

Since the test article mixtures were prepared in the field, the test article mixtures and the sample collection by the Sponsor were not performed according to GLP guidelines.

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 19 Sep02

(4)

SLI Study No. 3596.1

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	<u>Date</u>
Protocol Review	03/31/02
Analytical Chemistry – Solution Preparation	05/08/02
Analytical Chemistry – Derivatization Procedure	05/22/02
Data Audit	09/06/02
Draft Report Review	09/06/02
Protocol Amendment Review	09/06/02
Final Report Review	10/03/02

Reports to Study Director and Management 09/06/02, 10/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Rebecca A. Young Quality Assurance Team Leader

Gran utam

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 18/3/82

Date 10/3/02

Annex 56-B

(5)

SLI Study No. 3596.1

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES6
6. SUMMARY
7. INTRODUCTION
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURE9
10. ANALYTICAL CHEMISTRY10
11. SPRAYALPHA ANALYSIS10
12. STATISTICAL ANALYSIS13
13. PROTOCOL DEVIATIONS13
14. MAINTENANCE OF RAW DATA AND RECORDS13
15. RESULTS
16. CONCLUSION14
17. REPORT REVIEW

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

	1.	Standard Curve and Sample Analysis Values for the Before Use Purity Analyses	16
	2.	Standard Curve and Sample Analysis Values for the Before Use Purity Analyses	
		Sample Analysis Values and % Error (Before-Use Purity)	
	4.	Standard Curve and Sample Analysis Vales for the After- Use Purity Analyses for Stability	19
	5.	Sample Analysis Values and % Error (After-Use	
		Purity for Stability)	20
<u>Ap</u>	ber	ndices	
A.	St	atistical Analysis	21

В.	SLI Personnel Responsibilities	30

6. SUMMARY

The objective of this study was to assess the concentration(s) of glyphosate (active ingredient) in the Spray--Alpha formulation.

Five test article mixtures were prepared in the field by the Sponsor. Three 500 mL samples of each mixture were collected at the top/middle/bottom (or beginning/middle/end) of Hoppers PNC 3065 (Test Article Mixtures 1 and 4), PNC 2070 (Test Article Mixtures 2 and 5), and PNC 3077 (Test Article Mixture 3). Test Article mixtures were prepared as follows:

Ingredient	Amount Added (gallons)
Herbicide:	
Fuente-SL (MON 2139)	87.9
Surfactant:	
Cosmo Flux-411F	2.0
Well water	110.1
Mixing time: 10 minutes in flight.	· · · · · · · · · · · · · · · · · · ·

Test article mixtures were prepared on two separate days (May 2, 2002, for Test Article Mixtures 1 and 2, and May 3, 2002 for Test Article Mixtures 3, 4, and 5).

The overall concentration of the Spray--Alpha was 16.3 [in terms of % glyphosate (a.e.)] before use at SLI and 15.5 [in terms of % glyphosate (a.e.)] after use at SLI, indicating that the test material was stable during use at SLI.

The overall result (~16.3% glyphosate a.e.) was slightly higher than the anticipated 14.80% glyphosate (a.e.), but well within acceptable error of mixing conditions in the field. Therefore, since the results of the analysis were appropriate (and would provide conservative results for toxicity, irritation and sensitization since they were slightly higher than expected), approximately 400 mL of each sample were pooled into a single container for use in the remaining studies.

7. INTRODUCTION

This study was performed to assess the concentrations of glyphosate (active ingredient) in Spray-Alpha. This study was performed to support studies conducted under the US EPA, Health Effects Test Guidelines. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 17, 2002 (GLP initiation date). The test article mixtures were analyzed for glyphosate (a.e.) initially on May 22, 2002, prior to all other studies and again on August 12, 2002, after all studies were complete for purposes of stability.

8. MATERIALS AND METHODS

8.1. Test Article

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Alpha ^a	S02.001.3596	Light amber liquid	05/13/02	None Provided
<u>Ingredients</u> ^b				
Herbicide: Fuete-SL				None
Lot No.: 02-01-02				Provided
Surfactant: Cosmo Flux-411F				10/2003
Lot No.: 244301				
^a Sample pooled at SLI from five different mixes of SprayAlpha (top/middle/bottom). ^b Ingredients used in the five SprayAlpha mixes that were prepared by the Sponsor.				

The test article was received from the Sponsor and identified as follows:

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was

collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article containers were hand shaken and dispensed fresh on the day of analysis. The samples were stirred continuously until diluted for analysis.

9. EXPERIMENTAL PROCEDURE

9.1. Sample Collection

Samples were collected from the prepared test article mix using pre-labeled containers provided by SLI as follows:

Test Antisle Mind	F00 ml	Destadas
Test Article Mix 1	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 2	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 3	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 4	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 5	500 mL	Beginning
	500 mL	Middle
	500 mL	End

Five test article mixtures were prepared in the field by the Sponsor. Three 500 mL samples of each mixture were collected from the top/middle/bottom (or beginning/middle/end) of Hoppers PNC 3065 (Test Article Mixtures 1 and 4), PNC 2070 (Test Article Mixtures 2 and 5), and PNC 3077 (Test Article Mixture 3). The Test Article mixtures were prepared as follows:

Ingredient	Amount Added (gallons)
Herbicide:	
Fuente-SL (MON 2139)	87.9
Surfactant:	
Cosmo Flux-411F	2.0
Well water	110.1
Mixing time: 10 minutes in flight.	

Test article mixtures were prepared on two separate days (May 2, 2002, for Test Article Mixtures 1 and 2, and May 3, 2002 for Test Article Mixtures 3, 4, and 5).

A total of fifteen 500 mL samples were collected. The individual (Robert Derosier, (Fixed Wing Standards Pilot, American Embassy, Bogota, Unit 5127, APO AA 34038) collecting samples completed the SLI provided form upon collection including signature and date when collected at San Jose del Guaviare, Columbia. Samples were maintained under ambient conditions.

10. ANALYTICAL CHEMISTRY

The samples were analyzed in terms of the active ingredient for concentration determination prior to any dosing (Before Use-Purity) and again after completion of all studies for stability determination (After-Use Purity). All analytical dilutions were performed in duplicate (either the same day or over two days).

The analytical method was a previously validated method for the analysis of glyphosate in solution. Purity analysis of the test article was performed in duplicate by comparison of the test article with supplied reference standards of known concentrations.

11. SPRAY--ALPHA ANALYSIS

The analytical method for the analysis of the glyphosate component of Spray-Alpha was validated prior to the purity analyses performed at Springborn Laboratories, Inc. This method was utilized to determine both the purity and the stability of the Spray--Alpha test material before and after use at SLI.

- 11.1. Experimental System
- 11.1.1. High Performance Liquid Chromatography (HPLC) System

HPLC Model: Waters Pump: Waters 600E Injector: Waters WISP 717 (11)

SLI Study No. 3596.1

Detector: Waters 2487 Data System: H-P 3396B Integrator Precolumn: Phenomenex, SecurityGuard, C18, 4.0 x 3.0 mm ID Phenomenex, Spherex, C18, 5µ, 250 x 4.6 mm ID Column: Temperature: Ambient Detection: 500 nm, 0.4000 AUFS Mobile Phase: A: 0.05 M HCO₂NH₄, pH 3.6/5% ACN; B: 100% ACN Gradient: 100% A hold for 6 minutes; linear change to 25% A/75% B over 1 minute; hold for 5 minutes; linear change to 100% A over 1 minute: hold at 100% A for 15 minutes. Flow Rate: 1.0 mL/min Injection Volume: 10 µL

11.1.2. Apparatus

Balance: Glassware:	Mettler AG 245, accuracy of 0.0001 gram Assorted volumetric glassware
Filters:	Gelman, glass fiber; Millipore 0.2 μ Nylon-66; Whatman Puradisc
	25PP 0.45μm
Shaker:	Labline, Multi-Wrist Shaker
Oven:	Boekel Model 107905

11.1.3. Solutions and Reagents

11.1.3.1. Reagents

Water, Fisher, HPLC Grade, Lot # 024471, 025012 Acetonitrile, Fisher, HPLC Grade, Lot # 011777 Acetonitrile, J.T. Baker, HPLC Grade, Lot # M13828 Methanol, Fisher, HPLC Grade, Lot # 011803 NBD Chloride, Aldrich, 98%, Lot #12214L1 Hydrochloric Acid, Fisher, ACS Grade, Lot # 012161 Potassium Tetraborate Tetrahydrate:, Aldrich, 99%, Lot # 15325D1 Formic Acid, Fisher, Laboratory Grade, Lot # 003630 Ammonium Formate, Fisher, Lot # 990125 Glyphosate, Sigma, Lot # 71K36491

11.1.3.2. Solutions

<u>0.37 M Borate Solution:</u> Prepared by dissolving approximately 11.44 g of potassium tetraborate tetrahydrate in 100 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>1.2 N HCI</u>: Prepared by dissolving 10 mL of HCI in 90 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>25 mM NBD-CI</u>: Prepared by dissolving approximately 2.5 g of NBD-CI in 500 mL of methanol. The resulting solution was stable for 6 months under ambient storage conditions.

<u>Mobile Phase A:</u> Prepared by dissolving approximately 2.36 g of ammonium formate in 1425 mL of water. The pH was adjusted to approximately 3.6 with formic acid prior to the addition of 75 ml of acetonitrile. The resulting solution was mixed thoroughly, filtered through a 0.2μ Nylon-66 filter and degassed by helium sparging prior to use. Larger volumes were also prepared using the same ratio of components.

Mobile Phase B: Acetonitrile used 100% as received.

Diluent: All standards and samples were diluted in water.

<u>Stock Standard Solution:</u> Prepared by dissolving approximately 30 mg of glyphosate standard in a 100 mL flask with diluent.

<u>Standard Solutions</u>: Prepared by serially diluting the stock standard solution with water. The final concentrations of the solutions were in the range of approximately 0.02 to 0.14 mg/mL. These solutions were sonicated and then further diluted in diluent at a ratio of 3:10 and filtered through Whatman Puradisc 25PP 0.45 μ m filters prior to derivatization.

<u>Purity Solutions</u>: Prepared by diluting 1.2 mL aliquots of each sample to a final volume of 100 mL with diluent. The solutions were further diluted in diluent first at a ratio of 4:100 and then at a ratio of 4:10. The resulting solutions were then filtered through Whatman Puradisc 25PP 0.45 μ m filters prior to derivatization. These preparations were performed in duplicate for each sample.

<u>Derivatization Procedure:</u> In order to analyze the glyphosate component, a precolumn derivatization was performed by adding 1.2 mL of the appropriate control, standard, or sample solution to a labeled scintillation vial. Both 0.8 mL of the borate solution and 2.4 mL of the NBD-Cl solution were added to each vial. The vials were then capped and shaken by hand prior to being heated in an oven at 80° C for 30 minutes. After removal from the oven, the vials were allowed to cool for 10 minutes followed by the addition of 0.9 mL of the HCl solution. After the vials were again shaken by hand, they were allowed to stand for 10 minutes in order for incipient precipitation to occur. These solutions were then transferred to injection vials.

11.2. Analytical Procedures

11.2.1. Standard Curve Analysis

The peak area of the glyphosate acid component of each standard were determined, measured, combined, and plotted as a function of concentration to generate a standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 2.

11.2.2. Sample Analysis

The peak areas of the glyphosate acid component of each sample were measured and combined and then the concentration was determined by linear fit to the standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 2.

12. STATISTICAL ANALYSIS

A statistical analysis was conducted on the average results of the % glyphosate (a.e.) for each test article mixture as compared to the theoretical value [14.80% glyphosate (a.e.) as calculated by the Sponsor] and for the combined results of all test article mixture samples as compared to the theoretical value using one way analysis of variance (ANOVA).

13. PROTOCOL DEVIATIONS

No protocol deviations occurred during this study.

14. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

15. RESULTS

15.1. Analytical Chemistry Results

Individual Data: Tables 1-5

The actual sample results of the initial purity analyses are shown in Chemistry Tables 1, 2 and 3. These samples were analyzed over two separate days (Before-Use Purity). The actual sample results of the final purity analyses (After-

Use Purity for stability purposes) are shown in Chemistry Tables 4 and 5. These samples were all analyzed on the same day. All concentration values are reported in terms of the acid equivalent (a.e.) of the glyphosate. The overall concentration of Spray-Alpha was 16.3 [in terms of % glyphosate (a.e.)] before use at SLI and 15.5 [in terms of % glyphosate (a.e.)] after use at SLI, indicating that the test material was stable during use at SLI. The average % error for Before-Use (and After-Use) indicate that the Test Article Mix 3 was significantly higher in concentration then the other 4 mixes.

15.2. Statistical Analysis

Individual Data: Appendix A

Results of the Before-Use statistical analysis indicate that Test Article Mixture 4 (18.4% glyphosate a.e.) and test article mixture 2 (16.2% glyphosate a.e.) were significantly higher than the theoretical value (14.8% glyphosate a.e.). However, since these values were within the possible error rate of field mixing and since these samples were to be part of a pooled sample for dosing the remaining studies, these samples were included. Overall, the results of all mixtures for the pooled sample (16.3% glyphosate a.e.) were significantly higher than the theoretical value (14.8% glyphosate a.e.). This was considered within possible field mixing error and would provide a conservative estimate of toxicity, irritation and sensitization for the remaining studies. Therefore, the pooled sample was considered to be acceptable for use.

16. CONCLUSION

The overall result (~16.3% glyphosate a.e.) was slightly higher than the anticipated 14.80% glyphosate (a.e.), but well within acceptable error of mixing conditions in the field. Therefore, since the results of the analysis were appropriate (and would provide conservative results for toxicity, irritation and sensitization since they were slightly higher than expected), approximately 400 mL of each sample were pooled into a single container for use in the remaining studies.

Date _____

Kimberly L. Bonnette, M.S., LATG Study Director

17. REPORT REVIEW

Dawn D. Rodabaugh, B.S.

Toxicologist

Date <u>10/3/C</u>

<u>M. Haulna Clemon</u> M. Gardner Clemons, B.S.

M. Gardner Clemons, B.S. Senior Supervisor of Analytical Chemistry and Pharmacv

10.3.2002 Date ___

Chemistry Table 1

Standard Curve and Sample Analysis Values for the Before Use Purity Analyses (5/22/2002)

		Actual Conc.
Conc.	Peak Area	[% Glyphosate
(mg/mL)		(a.e.)]
0.008580	36729	NA
0.01716	74954	NA
0.02574	110393	NA
0.03432	152099	NA
0.04290	191914	NA
NA	134276	15.84
NA	139682	16.46
NA	133783	15.77
NA	122717	14.50
NA	177523	13.90
NA	115833	13.71
NA	146078	17.20
NA	149827	17.63
NA	142745	16.81
NA	140800	18.26
NA	145972	18.92
NA	151078	19.56
NA	114166	14.91
NA	112720	13.35
NA	116564	13.79
NA	118306	13.99
NA	122335	14.46
NA	116804	13.82
	0.008580 0.01716 0.02574 0.03432 0.04290 NA NA NA NA NA NA NA NA NA NA	Conc. (mg/mL)Peak Area0.008580367290.01716749540.025741103930.034321520990.04290191914NA134276NA139682NA133783NA122717NA177523NA146078NA149827NA142745NA142745NA145972NA151078NA112720NA116564NA118306NA122335

Correlation coefficient = 0.9996

Note: B = Beginning; M = Middle; E = End; NA = Not Applicable

* These samples were re-analyzed on 5/23/2002 to verify the original results.

** The original value generated for this sample on 5/22/2002 was not reported due to it's deviation from the mean.

(17)

Chemistry Table 2

Standard Curve and Sample Analysis Values for the Before Use Purity Analyses (5/23/2002) (Duplicate Samples)

Theoretical Actual Conc. Sample Type. Conc. Peak Area [% Glyphosate (mg/mL)(a.e.)] NA Std 1 0.008550 32585 Std 2 65919 NA 0.01710 Std 3 0.02565 99885 NA Std 4 0.03420 136969 NA Std 5 0.04275 173829 NA Test Mix # 1, B' NA 140334 18.21 17.99 Test Mix # 1, M' NA 138656 Test Mix # 1, E' NA 132930 17.27 Test Mix # 2, B' NA 122491 15.96 Test Mix # 2, M' NA 118147 15.41 NA 16.13 Test Mix # 2, E' 123855 Test Mix # 3, B' NA 151318 19.59 Test Mix # 3, M' NA 147145 19.07 Test Mix # 3, E' NA 18.92 145996 Test Mix # 4, B' NA 113519 14.83 NA 117864 15.38 Test Mix # 4, M' NA 118768 15.49 Test Mix # 4, E' Test Mix # 5, B' NA 122705 15.99 Test Mix # 5, M' NA 118657 15.48 Test Mix # 5, E' NA 136909 17.77

Correlation coefficient = 0.9997

' = Duplicate

Note: B = Beginning; M = Middle; E = End; NA = Not Applicable

Chemistry Table 3

Sample Analysis Value and % Error Based on Theoretical Value (Before Use-Purity)	Sample Analysis Value and % Error Based on Theoretical Value (Before Use-Purity)			
Sample Analysis Value and % Error Based on Theoretical Value (Before Use-P	Sample Analysis Value and % Error Based on Theoretical Value (Before Use-P		urity)	
Sample Analysis Value and % Error Based on Theoretical Value (Before Us	Sample Analysis Value and % Error Based on Theoretical Value (Before Us		se-Pl	
Sample Analysis Value and % Error Based on Theoretical Value (Befor	Sample Analysis Value and % Error Based on Theoretical Value (Befor		č e	
Sample Analysis Value and % Error Based on Theoretical Value (E	Sample Analysis Value and % Error Based on Theoretical Value (E		Befor	
Sample Analysis Value and % Error Based on Theoretical Value	Sample Analysis Value and % Error Based on Theoretical Value		e (E	
Sample Analysis Value and % Error Based on Theoretical	Sample Analysis Value and % Error Based on Theoretical		Valı	
Sample Analysis Value and % Error Based on Theore	Sample Analysis Value and % Error Based on Theore		tical	
Sample Analysis Value and % Error Based on Th	Sample Analysis Value and % Error Based on Th		eore	
Sample Analysis Value and % Error Based of	Sample Analysis Value and % Error Based of)	م ۲	
Sample Analysis Value and % Error Base	Sample Analysis Value and % Error Base	0.12	<u>ت</u>	
Sample Analysis Value and % Error	Sample Analysis Value and % Error		Base	
Sample Analysis Value and % Er	Sample Analysis Value and % Er		Tor	
Sample Analysis Value and 6	Sample Analysis Value and 6)	ш %	
Sample Analysis Value a	Sample Analysis Value		, pue	
Sample Analysis Va	Sample Analysis Va		lue	
Sample Analysi	Sample Analysi		s Va	
Sample Ana	Sample Ana		alysi	
Sample	Sample		Anê	
Sar	Sai		mple	
			Sai	

	Date of	Analysis	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/23/2002	5/22/2002	5/23/2002	5/23/2002	5/22/2002	5/23/2002	5/23/2002	5/23/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002	5/22/2002	5/23/2002
Average %	Error by	Test Mix ^a						14.3						6.1									24.6						4.4						7.8
Average	% Error by	Type ^a		15.0		16.4		11.6		4.9		5.1		8.2			24.0			25.3			24.5		0.5		6.9		5.7		6.8		3.4		13.3
Theoretical	Value	% Error ^a	7.0	23.0	11.2	21.6	6.6	16.7	2.0	7.8	6.1	4.1	7.4	9.0	16.2	32.4	23.4	19.1	28.9	27.8	13.6	27.8	32.2	0.7	0.2	9.8	3.9	6.8	4.7	5.5	8.0	2.3	4.6	6.6	20.1
Overall Average Theoretical	% Glyphosate	(a.e.)	16.04							-																									
Average %	Glyphosate	(a.e.) by Test						16.92						14.94		-							18.44						14.63			-			15.25
Average %	Glyphosate	(a.e.) by		17.03		17.23		16.52		15.23		14.66		14.92			18.35			18.54			18.43		14.87		14.37		14.64		14.99		14.97		15.80
%	Glyphosate	(a.e.)	15.84	18.21	16.46	17.99	15.77	17.27	14.50	15.96	13.90	15.41	13.71	16.13	17.20	19.59	18.26	17.63	19.07	18.92	16.81	18.92	19.56	14.91	14.83	13.35	15.38	13.79	15.49	13.99	15.99	14.46	15.48	13.82	17.77
		Sample Type	Beginning	Beginning ^r	Middle	Middle'	End	End'	Beginning	Beginning'	Middle	Middle'	End	End'	Beginning	Beginning'	Beginning	Middle	Middle'	Middle	End	End'	End	Beginning	Beginning'	Middle	Middle [*]	End	End'	Beginning	Beginning'	Middle	Middle'	End	End'
	Test Mix	°.	1	1	+	۲	-	-	5	2	7	2	2	2	ო	ო	ð,	с С	e	3*	3	3	3*	4*	4	4	4	4	4	5	5	5	5	5	5

⁺ = Duplicate
 ^{*}Re-run of initial sample to verify results
 ^aPercent error determined based on result compared to theoretical value (14.80%).

(19)

SLI Study No. 3596.1

Chemistry Table 4 Standard Curve and Sample Analysis Values for the After-Use Purity (for Stability) Analyses

,	
(8/12/2002)	

		12/2002)	-
	Theoretical		Actual Conc.
Sample Type.	Conc.	Peak Area	[% Glyphosate (a.e.)]
	(mg/mL)		
Std 1	0.008778	35758	NA
Std 2	0.01756	52370	NA
Std 3	0.02633	105625	NA
Std 4	0.03511	149415	NA
Std 5	0.04389	198319	NA
Test Mix # 1, B	NA	128284	15.54
Test Mix # 1, B'	NA	136144	16.43
Test Mix # 1, M	NA	135922	16.40
Test Mix # 1, M'	NA	131126	15.86
Test Mix # 1, E	NA	135464	16.35
Test Mix # 1, E'	NA	139284	16.79
Test Mix # 2, B	NA	123800	15.03
Test Mix # 2, B'	NA	118776	14.46
Test Mix # 2, M	NA	123293	14.97
Test Mix # 2, M'	NA	120982	14.71
Test Mix # 2, E	NA	125297	15.20
Test Mix # 2, E'	NA	122015	14.83
Test Mix # 3, B	NA	148552	17.84
Test Mix # 3, B'	NA	149797	17.98
Test Mix # 3, M	NA	149962	18.00
Test Mix # 3, M'	NA	146301	17.58
Test Mix # 3, E	NA	150692	18.08
Test Mix # 3, E'	NA	152330	18.27
Test Mix # 4, B	NA	114245	13.95
Test Mix # 4, B'	NA	118361	14.41
Test Mix # 4, M	NA	116396	14.19
Test Mix # 4, M'	NA	112566	13.75
Test Mix # 4, E	NA	115074	14.04
Test Mix # 4, E'	NA	114163	13.94
Test Mix # 5, B	NA	120549	14.66
Test Mix # 5, B'	NA	116356	14.19
Test Mix # 5, M	NA	121537	14.77
Test Mix # 5, M'	NA	115371	14.07
Test Mix # 5, E	NA	119116	14.50
Test Mix # 5, E'	NA	119244	14.51
Demolation as officient	- 0.000		

Correlation coefficient = 0.996

Note: B = Beginning; M = Middle; E = End; NA = Not Applicable ' = Duplicate Sample

SLI Study No. 3596.1 Sample Analysis Value and % Error Based on Theoretical Value (After Use-Purity for Stability)

Date of	Analysis	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002	8/12/2002
Average % Error by	Test Mix ^a						9.7						1.4						21.3						5.1						2.4
% Error by	Type ^a		8.0		9.0		12.0		1.9		0.9		1.5		21.0		20.2		22.8		4.2		5.6		5.5		2.5		2.6		2.0
Value	% Error ^a	5.0	11.0	10.8	7.2	10.5	13.4	1.6	2.3	1.1	0.6	2.7	0.2	20.5	21.5	21.6	18.8	22.2	23.4	5.7	2.6	4.1	7.1	5.1	5.8	0.9	4.1	0.2	4.9	2.0	2.0
% Glyphosate Value	(a.e.)	15.51																													
Average % Glyphosate	(a.e.) by Test					1000 T	16.23						14.87						17.96						14.05						14.45
Average % Glyphosate	(a.e.) by		15.99		16.13		16.57		14.75		14.84		15.02		17.91		17.79		18.18		14.18		13.97		13.99		14.43		14.42		14.51
% Glyphosate	(a.e.)	15.54	16.43	16.40	15.86	16.35	16.79	15.03	14.46	14.97	14.71	15.20	14.83	17.84	17.98	18.00	17.58	18.08	18.27	13.95	14.41	14.19	13.75	14.04	13.94	14.66	14.19	14.77	14.07	14.50	14.51
	Sample Type	Beginning	Beginning'	Middle	Middle*	End	End'	Beginning	Beginning'	Middle	Middle'	End	End'	Beginning	Beginning'	Middle	Middle'	End	End'	Beginning	Beginning'	Middle	Middle'	End	End'	Beginning	Beginning'	Middle	Middle*	End	End'
Test Mix	No.	-	+	+	-		÷	2	2	2	2	2	2	3	S	3	3	3	e	4	4	4	4	4	4	2	Q	2	Q	S	5

⁺ = Duplicate
 *Re-run of initial sample to verify results
 **Not used in calculation of average. Refer to statement dated 5/28/2002.
 ^aPercent error determined based on result compared to theoretical value (14.8%).

Annex 56-B

(21)

SLI Study No. 3596.1

APPENDIX A

Statistical Analysis

FURITY ANALYSIS FOR GLYPHOSATE (ACTIVE IN-REDIENT)																	
(ACTIVE							ц	9	13.990	15.990	14.460	15.480	13.820	17.770			
LAPHOSATE	, TTY	.e.)	NG				4	S	14.910	14.830	13.350	15.380	13.790	15.490			
SIS FOR G	BEFORE USE FURITY	& GLYPHOSATE (a.e.	RAW DATA LISTING	TREATMENTS	IXTURE NC		3a	4	17.200	19.590	18.260	17.630	19.070	18.920	16.810	18.920	19.560
ITY ANALY	BEFOR	& CLIVE	RAW D	Æ	TEST ARTICLE MIXIURE NO.:		17	m	14.500	15.960	13.900	15.410	13.710	16.130			
FUR					TEST	ICAL.	٦	7	15.840	18.210	16.460	17.990	15.770	17.270			
3596.1					CONTROL	(THEOREFICA)	VALUE)	GROUP 1	14.800	14.800	14.800	14.800	14.800	14.800			
SLI STUDY NO. 3596.1							OBSERVATIONS	5	1	2	m	4	ъ	9	7	80	6

ANOTE: ADDITIONAL REPLICATE SAMPLE ANALYZED FOR TOP/MIDDLE/BOTTOM TO VERLEY HIGHER RESULTS.

435

COMBINED RESULTS (FOR POOLED SAMPLE) 2														
COMBI (FOR E	15.840 18.210	17.990 15.770		13.900 15.410 13.710	• •	19.590 18.260	17.630 19.070 18.920		19.560 14.910		13.790 15.490	• •	• •	13.820
CONTROL (THEORETICAL VALUE) 1	008	800	008.00	14.800 1 14.800 1 14.800 1			14.800 1 14.800 1 14.800 1	000		808	888		008.00	14.800 1 14.800 1
GROUP OBSIERVATIONS	-1 Q m	о ч ю и	0 - 8	e 8 1	12	14 15	11 18	51 OS	22 22	24 25	26 27	8 8 8	9 E 1	33 55

436

FURITY ANALYSIS FOR GLAPHOSAUE (ACTIVE INEREDIENT)	BEFORE USE FURITY	S MEAN SQUARE	34.8655	7574								
PURITY ANAL	VARIANCE	SUM OF SOUARES	34.8655	112.4706	147.3360	.0000			Ъ	299		
	QF	DF	7	64	65	Ъ		~		0 6.	0.0000	꼬녀업
3596.1	SIS	ATION	S			F = 19.84, DF= 1/ 64, P=0.0000	2 16.3 1.87	TUKEYS TEST (2-tailed)	PROB	0.0000 6.299	0	SIGNLFICANT AT .05 SIGNIFICANT AT .01 SIGNIFICANT AT .001
SLI STUDY NO. 3596.1	ANALYSIS	SOURCE OF VARIATION	BEIWEEN CLASSES	WITHIN CLASSES		14, DF=	1 14.8 0.00	EST (2-	DF	64		SIGNIFICANT AT SIGNIFICANT AT SIGNIFICANT AT
IUIS	A N	RCE	MEEN	NH	AL	19.8	SN .	EYS T	GROUP	1 VS 2	#	SIGN
IIIS		SOU	BEL	TIW	TOTAL	II Fri	GROUP: MEANS: S.D. :	TUK	Ē	1	2	* * # *

(25)

(ACTIVE INGREDIENT)	
FURITY ANALYSIS FOR GLYPHOSATE (1	
. 3596.1	
ON AGDIS ITS	

AFTER USE FURLIY (STABILLIY) & GLYPHOGATE (a.e.) RAW DATA LLISTING TREATMENTS

	φΩ	14.660 14.190 14.770 14.070 14.500 14.500
	4 D	13.950 14.410 14.190 13.750 14.040 13.940
TEST ARTICLE MIXIURE NO.:	4	17.840 17.980 18.000 17.580 18.270 18.270
TICLE MI	M 5	15.030 14.460 14.970 14.710 15.200 14.830
TEST M	7 77	15.540 16.430 16.400 15.860 16.350 16.790
CONTROL	(THEORETICAL VALUE) GROUP 1	14.800 14.800 14.800 14.800 14.800 14.800
	OBSERVATIONS	

438

SLI STUDY NO. 3596.1	to. 3596.1		FURITY ANALYSI	s for g
AN	ANALYSJ	IS OF	VARIANCE	3596.1 AFTER USE FURITY (STABILITY)
SOURCE OF VARIATION	ARLATION	ΩF	SUM OF SQUARES	MEAN SQUARE
BEIMEEN CLASSES	SES	ŝ	63.6555	12.7311
WITHIN CLASSES	SES	30	2.2468	0.0749
TOTAL		35	65.9023	
F =169.99, DF=	DF= 5/ 30,	P=0.0000	0	
GROUP: MEANS: 14 S.D. : 0.0	1 2 14.8 16.2 0.00 0.45	3 14.9 0.26	4 5 18.0 14.0 0.23 0.23	
TUKEYS TEST	(2-tailed)	(
GROUP	DF PROB	B		
1 VS 2	30 0.0000	0 12.784		
<i>с</i> ,	0			
1 VS 4	30 0.0000	0 28.269		
AS 6				
VS 3				
2 VS 4	30 0.0000	0 15.484 0 10 527		
VS 6		0 15.917		
VS 4		14		
3 VS 5 3	30 0.0002	2 7.339		
VS 5		(*)		
4 VS 6 3 5 VS 6 3	30 0.0000 30 0.1410	0 31.402 0 3.610		
2 #	.0	0.0000		
	00	0.9981		
# # ۲ ۵		0.0006		
9	0.	0.2607		
		10		
** SIGNIFICANT AT # SIGNIFICANT AT	ZANT AT .01 ZANT AT .001	- 5		

439

PAGE 2

FURITY ANALYSIS FOR GLAPHOSATE (ACTIVE INCREDIENT)	AFTER USE FURITY (STABILLITY) & GLAFHOSATE (a.e.) RAW DATA LLSTING TREAUMENTS COMBINED RESULTS (FOR FOOLED SAMFLE)																											
FUR	COMBIN (FOR P	7	15.540	16.430 16.400	15.860	16.350	15.030	14.460	14.970	14.710	15.200	14.830	17.980	18.000	17.580	18.080	13 950	14.410	14.190	13.750	14.040	13.940	14.660	14.190	14.770	14.070	14.500	14.510
3596.1	CONTROL CONTROL (THEORETTCAL VOLUME)	H	14.800	14.800 14.800	14.800	14.800	14.800 14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800 14 ROD	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800
SLI STUDY NO. 3596.1		GROUP OBSERVATIONS	. - с	M W	ተ	· ח	9 1	. 80	6	10	#	21 5	1 F	:5	16	17	18	28	21	22	23	24	25	26	27	28	29	JU S

(28)

PAGE 1

sili study no. 3596.1		FURITY ANALYSIS	FURITY ANALYSIS FOR GLAPHOSAUE (ACTIVE INVERSION)
ANALYSIS	s OF	VARIANCE	AFTER USE FURITY (STABILITY)
SOURCE OF VARIATION	Ъ	SUM OF SQUARES	MEAN SQUARE
BEIMEEN CLASSES	7	7.5615	7.5615
WITHIN CLASSES	58	63.3818	1.0928
TOTAL	59	70.9433	
F = 6.92, DF= 1/ 58, P=0.0109	P=0.0109		
GROUP: 1 2 MEANS: 14.8 15.5 S.D. : 0.00 1.48			
TUKEYS TEST (2-tailed)	-		
GROUP DF PROB	E 8		
1 VS 2 58 0.0109	0.0109 3.720		
2 * 0.	0.0109		
* SIGNIFICANT AT .05 ** SIGNIFICANT AT .01 # SIGNIFICANT AT .001	3 1 1		

Annex 56-B

(30)

SLI Study No. 3596.1

APPENDIX B

SLI Personnel Responsibilities

Annex 56-B

(31)

SLI Study No. 3596.1

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
M. Gardner Clemons, B.S.	Senior Supervisor of Analytical Chemistry and Pharmacy
Delores P. Knippen	Supervisor of Pharmacy
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
Kathy M. Gasser	Supervisor of Archives

Annex 56-C

Six Acute Toxicity Studies with Spray-Bravo, SLI Study N° 3596.10, 4 September 2002

(United States Embassy in Bogotá, 2011)

AN ACUTE DERMAL TOXICITY STUDY IN RATS WITH SPRAY--BRAVO

FINAL REPORT

OPPTS Guideline

870.1200

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 4, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.10

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 28

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: Date _____ Date _____

Title

Signature

(3)

AUG 2 9 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 28 Aug 02

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	04/25/02
Necropsy	07/15/02
Data Audit	08/23/02
Draft Report Review	08/23/02
Protocol Amendment Review	08/23/02
Final Report Review	09/04/02

Reports to Study Director and Management 08/23/02, 09/04/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Rebecca A. Young / Quality Assurance Team Leader

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date

9/4/n2 Date

Annex 56-C

(5)

SLI Study No. 3596.10

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT4
4. TABLE OF CONTENTS5
5. LIST OF TABLES AND APPENDICES6
6. SUMMARY
7. INTRODUCTION8
8. MATERIALS AND METHODS8
9. EXPERIMENTAL PROCEDURES10
10. ANALYSIS OF DATA12
11. MAINTENANCE OF RAW DATA AND RECORDS12
12. RESULTS
13. CONCLUSION13
14. REPORT REVIEW13
15. REFERENCES14

5. LIST OF TABLES AND APPENDICES

Tables

1.	Individual Clinical Observations	15
2.	Individual Body Weights	18
3.	Individual Gross Necropsy Observations	20

Appendices

Α.	Macroscopic Dermal Grading System	22
Β.	SLI Personnel Responsibilities	27

6. SUMMARY

The single-dose dermal toxicity of Spray--Bravo was evaluated in Sprague Dawley rats. A limit test was performed in which one group of five male and five female rats received a single dermal administration of the test article at a dose of 5000 mg/kg body weight. Following dosing, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the limit test. Clinical abnormalities observed during the study included dark material around the facial area and urine stain. Minor/transient dermal irritation was noted at the site of test article application. Body weight loss was noted in two male and two females during the study day 0 to 7 body weight interval which is routinely observed in this study type due to experimental manipulation. Body weight gain was noted for all other animals during the test period. All animals exceeded their initial body weight by study termination (day 14). No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute dermal LD50 of Spray--Bravo was estimated to be greater than 5000 mg/kg in the rat.

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Bravo in Sprague Dawley rats when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1200, Acute Dermal Toxicity, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 26, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on July 1, 2002 (day 0), and concluded with necropsy on July 15, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned	Physical	Receipt	Expiration
-	SLĪ ID	Description	Date	Date
SprayBravo ^a	S02.002.3596	Cloudy pale	05/31/02	None
		amber liquid		provided
Ingredients: ^b				
Herbicide: Roundup SL				None
Lot No.: 4010/4212				provided
4397/4272				
4333/4340				
4379/4076				
4397/4333				
Surfactant: Cosmo Flux-411F				None
Lot No.: Unknown				provided

^aSample pooled at SLI from five different mixes of Spray-Bravo (top/middle/bottom). ^bIngredients used in the five Spray-Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.8.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing. The density of the test article was determined to be 1.08 g/mL.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 69-75°F (21-24°C) and 37-58%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental

contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) were provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized (Alpha DS-10 AcuTox) random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 11 weeks of age and weighed 360-391 g prior to dosing. The female animals were approximately 11 weeks of age and weighed 212-235 g prior to dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

On day -1, the fur was removed from the dorsal trunk area of the animals chosen for the limit test using an animal clipper. The clipped area was approximately 10% of the animal's body surface area (BSA). The region included the scapula (shoulder) to the wing of the ilium (hipbone) and half way down the flank on each side of the animal. Care was taken to avoid abrading the skin during the clipping procedure.

9.2. Dosing

On the following day (day 0), the test article was administered dermally to approximately 10% of the body surface area. The four corners of this area were delineated in the clipped area with an indelible marker. The test article was then spread evenly over the delineated test area and held in contact with the skin with an appropriately sized 4-ply porous gauze dressing backed with a plastic wrap which was placed over the gauze dressing (occlusive binding). Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area. The elastic wrap was further secured with a tape harness on the cranial end of the trunk and then secured with adhesive tape around the trunk at the caudal end.

The test article was administered at the following level:

Dose Level	Dose Volume	Concentration	No. of	Animals
(mg/kg)	(mL/kg)	(%)	Male	Female
5000	4.63 ^a	100 ^b	5	5

^aAdjusted based on a density of 1.08 g/mL. ^bPooled test article.

Individual doses were calculated based on the animal's day 0 body weight. After an approximate 24-hour exposure period, the binding materials were removed and the corners of the test site were re-delineated using a marker. Residual test article was removed using gauze moistened with deionized water followed by dry gauze.

9.3. Dermal Observations

The test animals were examined for erythema and edema following patch removal and the responses scored on study day 1 and daily thereafter (days 2-14) according to the Macroscopic Dermal Grading System provided in Appendix A which is based on Draize [2]. The dermal test sites were reclipped as necessary to allow clear visualization of the skin.

9.4. Clinical Observations

The animals were observed for clinical abnormalities a minimum of two times on study day 0 (postdose) and daily thereafter (days 1-14). A mortality check was performed twice daily, in the morning and afternoon.

9.5. Body Weights

Individual body weights were obtained for the animals prior to dosing on day 0 and on days 7 and 14.

9.6. Gross Necropsy

All animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.7. Protocol Deviations

No protocol deviations occurred during this study.

10. ANALYSIS OF DATA

Data from the study were analyzed and an LD50 value estimated as follows:

- < 50% Mortality: LD50 was estimated as greater than the administered dose.
- = 50% Mortality: LD50 was estimated as equal to the administered dose.

> 50% Mortality: LD50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Mortality

Individual Data: Table 1

No mortality occurred during the limit test.

(13)

SLI Study No. 3596.10

12.2. Clinical/Dermal Observations

Individual Data: Table 1

Clinical abnormalities observed during the study included dark material around the facial area and urine stain. Minor/transient dermal irritation was noted at the site of test article application.

12.3. Body Weight Data

Individual Data: Table 2

Body weight loss was noted in two males and two females during the study day 0 to 7 body weight interval which is routinely observed in this study type due to experimental manipulation. Body weight gain was noted for all other animals during the test period. All animals exceeded their initial body weight by study termination (day 14).

12.4. Gross Necropsy

Individual Data: Table 3

No significant gross internal findings were observed at necropsy on study day 14.

13. CONCLUSION

Under the conditions of this test, the acute dermal LD50 of Spray--Bravo was estimated to be greater than 5000 mg/kg in the rat.

Kimberly L! Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S.

Associate Toxicologist

Date

Date 9/4/02

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and</u> <u>Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.

STUDY NO.: 3596.10 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

		Α	AN ACUTE DERMAL TOXI CI TY STUDY IN RATS	AL TO	I CI]	Σ Δ	rudy	ΙN	RATS						
MALES	5000 MG/KG		INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)	AL CLINICAL OBSERVA (POSITIVE FINDINGS)	E FJ	OBS	ERVA NGS)	II ON	S						
					Ĩ	DAY OF	FST	STUDY	-		-	-	-		
MALE#	0BSERVATI ONS			0	8	ŝ	4 5	9	۲.	∞	9 10 11	=	12	13 14	4
A5315	SCHEDULED EUTHANASI A ERYTHEMA GRADE O EDEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	2		د د د د	ሻ ሻ	ሻ ሻ	4 4 4 4	പപ	ሻ ዋ	<u>م</u> م	4 4 4 4	4	ሻ ሻ	<u>م</u> م	<u>م</u> م م
A5316	SCHEDULED EUTHANASI A ERYTHEMA GRADE O EDEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE ERYTHEMA GRADE 1	2		4 4 4	പപ	~~~~	4 4 4 4	4 4	പപ	<u>م</u> م	4 4 4 4	ሻ ባ	പപ	<u>م</u> م	4 ك ك
A5317	SCHEDULED EUTHANASI A ERYTHEMA GRADE O EDEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE DARK MATERI AL AROUND MOUTH	ά H		44 4 444	പ പ	<u>م</u> م	4 4 4 4	ሻ ሻ	ሻ ሻ	<u>م</u> م	د. د. د.	ር ር	പപ	<u>م</u> م	۵. ۵. ۵.
A5307	SCHEDULED EUTHANASI A ERYTHEMA GRADE O EDEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	2		4 4 4 4 4	പപ	പപ പ	4 4 4 4	ሻ ዋ	ፈ ፈ	<u>م</u> م	4 4 4 4	ፈ ፈ	ሻ ሻ	<u>م</u> م	۵. ۵. ۵.
A5314	SCHEDULED EUTHANASI A ERYTHEMA GRADE O EDEMA GRADE O DARK MATERI AL AROUND EYE(S) DARK MATERI AL AROUND NOSE	2		4 4 4 4	ፈ ፈ	ሻ ሻ	4 4 4 4	ሻ ሻ	ሻ ሻ	<u>م</u> م	4 4 4	ፈ ፈ	ሻ ሻ	<u>م</u> م	۵. ۵. ۵.
GRADE CODE:	DE: 1=SLIGHT 2=MODERATE	3=SEVERE	P=PRESENT	L=LEFT	ET	- B	R=RI GHT	1	B=BI LATERAL	LAT	ERAL	-		1	

	OF STATE
3596.10	ENT
NO.: 35	U. S. J
STUDY	INL/A,

TABLE 1

AN ACUTE DERMAL TOXI CITY STUDY IN RATS

			Z	INDIVIDUAL CLINICAL OBSERVATIONS		יי ער ו CAL	0BS	SERV,	ATI 0	SN	2					
FEMALES	5000 MG/KG			(P	(POSITI VE FINDINGS)	VE F	IUNI	NGS	-							
			1 1 1 1 1 1 1 1	- 1 1 1 1 1 1 1 1		- A	DAY OF)F S	STUDY			1	1 1 1			
FEMALE#	0BSERVATI ONS	SNO			0 1	5	3	4	5 6	5 7	×	6	9 10 11 12 13		2 13	14
A5348	SCHEDULED EUTHANASIA URINE STAIN UNKEMPT APPEARANCE	HANASI A RANCE			1 1	<u>с</u> ,	1		1	1	,	,			•	Ч 1
	ERYTHEMA GRADE O EDEMA GRADE O DARK MATERIAL AROUND DARK MATERIAL AROUND DARK MATERIAL AROUND DARK MATERIAL AROUND	ERYTHEMA GRADE O EDEMA GRADE O DARK MATTERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE DARK MATERIAL AROUND NOSE			4 4 4 4 4 4	<u>л</u> Ф	<u>ч</u> Ф	<u>م</u> م		<u>л</u> Ф	7 9	<u>ч</u> Ф	<u>ч</u> с.	 	1 G 2 G	<u>ч</u> ч
A5330	SCHEDULED EUTHANASIA URINE STAIN ERYTHEMA GRADE O	HANASI A E O			1	٩	٩		ط ط	<u>م</u>	<u>م</u>	۵.	۵.		<u>е</u>	4 4
	EDEMA GRADE O DARK MATERIAL AROUND DARK MATERIAL AROUND	AROUND EYE(S)			4 4 4	. d.	. L	. Ч	, с. , с.	. <u>-</u>		. Ч	. L	. С	. С .	. Ч
	DARK MATERIAL AROUND ERYTHEMA GRADE 1	AROUND MOUTH			Ъ Ъ											
A5338		HANASI A														Ч
	ERYTHEMA GRADE O EDEMA GRADE O DARK MATERIAL AROUND DARK MATERIAL AROUND	ERYTHEMA GRADE 0 EDEMA GRADE 0 DARK MATERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE			4 4 4	ፈ ፈ	ፈ ፈ	<u>م</u> م	44 44	<u>е</u> е	4 4	പപ	പപ	 4 4	4 4 4 4	പ
A5331	SCHEDULED EUTHANASIA ERYTHEMA GRADE O EDEMA GRADE O ERYTHEMA GRADE 1	HANASIA DE 0 DE 1			പ പ	ፈ ፈ	പപ	4 4	4 4	4 4 0 0	ባ ባ	പപ	ፈ ፈ	- Ц - Ц	4 4 4 4	ፈ ፈ ፈ
GRADE CODE:	DE: 1=SLI GHT	2=MODERATE	3=SEVERE	P=PRESENT	L=LEFT	EFT		R=RI GHT	E	B	B=BI LATERAL	TER	AL			1

STUDY NO.: 3596.10 INL/A, U.S. DEPARTMENT OF STATE

TABLE 1

PAGE 3

AN ACUTE DERMAL TOXI CITY STUDY IN RATS

I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	DAY OF STUDY	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		GRADE CODE: 1=SLIGHT 2=MODERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
		OBSERVATI ONS	A5344 SCHEDULED EUTHANASIA URINE STAIN ERYTHEMA GRADE O ERYTHEMA GRADE O EDEMA GRADE O DARK MATERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE ERYTHEMA GRADE 1	HT 2=MODERATE 3=SEVERE
FEMALES 5000 MG/KG		FEMALE# 0BSERV	A5344 SCHEDULED URINE STAI ERYTHEMA G EDEMA GRAD DARK MATER DARK MATER DARK MATER	GRADE CODE: 1=SLIG

STUDY NO.: 3596.10 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

AN ACUTE DERMAL TOXICITY STUDY IN RATS

I NDI VI DUAL BODY WEI GHTS (GRANS)	14 AT DEATH (DAY)	77 409		۵۵	0		
	STUDY 7 14	409	405	408	382	406	$\begin{array}{c} 402\\11.3\\5\end{array}$
		377	379	389	356	387	378 13. 1 5
5000 MG/KG	DAY OF 0					391	379 12. 4 5
MALES	ANI MAL#	A5315	A5316	A5317	A5307	A5314	MEAN S. D. N

.

STUDY NO.: 3596.10 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

PAGE 2

AN ACUTE DERMAL TOXI CI TY STUDY IN RATS

I NDI VI DUAL BODY WEI GHTS (GRAMS)

I NDI VI DUAL BODY WEI GHIS (GRAMS)									
	14 AT DEATH	1 1 1) 216					7 11.6	5
5000 MG/KG	DAY OF STT 0 7	21	212 209			228 234		8.3 12.7	5 5
FEMALES	ANI MAL#	A5348	A5330	A5338	A5331	A5344	MEAN	S. D.	N

			FATE	SCHEDULED EUTHANASIA				
TABLE 3	AN ACUTE DERMAL TOXI CITY STUDY IN RATS	I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS				
r of sta			STUDY DAY	14	14	14	14	14
INL/A, U.S. DEPARTMENT OF ST		5000 MG/KG	DAY OF DEATH	15-JUL-02	15- JUL-02	15-JUL-02	15- JUL- 02	45314 15-JUL-02 14
INL/A, U.S		MALES	ANI MAL#	A5315	A5316	A5317	A5307	A5314

PAGE 1

STUDY NO.: 3596.10

Annex 56-C

(20)

	0F STATE
3596.10	DEPARTMENT
NO. :	U. S.
STUDY	INL/A,

TABLE 3

PAGE 2

AN ACUTE DERMAL TOXI CI TY STUDY IN RATS

FEMALES	5000 MG/KG			
ANI MAL#	DAY OF DEATH	STUDY DAY	OBSERVATI ON	FATE
A5348	15- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A5330	15- JUL- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A5338	15-JUL-02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A5331	15-JUL-02 14	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A5344	A5344 15-JUL-02 14	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA

Annex 56-C

(22)

SLI Study No. 3596.10

APPENDIX A

Macroscopic Dermal Grading System

(23)

SLI Study No. 3596.10

MACROSCOPIC DERMAL GRADING SYSTEM

ERYTHEMA AND EDEMA OBSERVATIONS				
OBSERVATION	DEFINITION	CODE		
Erythema – Grade 0	No erythema	0		
Erythema – Grade 1	Very slight erythema (barely perceptible)	1		
Erythema – Grade 2	Well-defined erythema	2		
Erythema – Grade 3	Moderate to severe erythema	3		
Erythema – Grade 4	Severe erythema (beet redness)	4		
Maximized Grade 4	Notable dermal lesions (see below)	M – 4 (see below)		
Edema – Grade 0	No edema	0		
Edema – Grade 1	Very slight edema (barely perceptible)	1		
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	2		
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	3		
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	4		
NOTE: Each animal was assigned an erythema and edema score. The most severely affected				

NOTE: Each animal was assigned an erythema and edema score. The most severely affected area within the test site was graded. If eschar, blanching, ulceration and/or necrosis greater than grade 1 was observed, then the "Maximized Grade 4" was assigned to the test site in place of the erythema score and the type of notable dermal lesion(s) (e.g., eschar - grade 2, blanching - grade 3, ulceration - grade 4, etc.) was noted. The presence of any other dermal changes (e.g., desquamation, fissuring, eschar exfoliation, etc.) was also recorded.

MACROSCOPIC DERMAL GRADING SYSTEM

NOTABLE DERMAL LESIONS			
OBSERVATION	CODE	DEFINITION	
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.	
Eschar – Grade 2	ES-2	> 10% < 25% of test site.	
Eschar – Grade 3	ES-3	> 25% < 50% of test site.	
Eschar – Grade 4	ES-4	> 50% of test site.	
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.	
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.	
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.	
Blanching – Grade 4	BLA-4	> 50% of test site.	
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.	
Ulceration – Grade 2	U-2	> 10% < 25% of test site.	
Ulceration – Grade 3	U-3	> 25% < 50% of test site.	
Ulceration – Grade 4	U-4	> 50% of test site.	
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (Note color of necrosis).	
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (Note color of necrosis).	
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (Note color of necrosis).	
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (Note color of necrosis).	

Annex 56-C

SLI Study No. 3596.10

MACROSCOPIC DERMAL GRADING SYSTEM

	ADDITIONAL DERMAL FINDINGS	
OBSERVATION	DEFINITION	CODE
Desquamation	Characterized by scaling or flaking of dermal tissue with or without denuded areas.	DES
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).	
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3
Superficial Lightening - Grade 4	> 50% of test site	SL-4

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL FINDINGS				
OBSERVATION	DEFINITION	CODE		
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which do not interfere with the scoring of the test site.	IT		

Annex 56-C

(27)

SLI Study No. 3596.10

APPENDIX B

SLI Personnel Responsibilities

(28)

SLI Study No. 3596.10

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kevin V. Weitzel, A.S.	Primary Technician/Inhalation Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS WITH SPRAY--BRAVO

FINAL REPORT

OPPTS Guideline

870.1300

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

January 7, 2003

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.11

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 50

(2)

SLI Study No. 3596.11

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent:	 Date
company rigona	

Title

Signature

NOV 2 1 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk

Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

lov 02 Date 20

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review Body Weights Data Audit Draft Report Review Protocol Amendment Review Final Report Review	04/25/02 08/02/02, 08/15/02 11/18/02 11/18/02 11/18/02 01/07/03
Poporte to Study Director	11/10/02 01/07/02

Reports to Study Director and Management 11/18/02, 01/07/03

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Troy O. Joseph

Quality Assurance Auditor

Date <u>1/7</u> 162

Unita In 1

Ánita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 1/7/03

Annex 56-C

(5)

SLI Study No. 3596.11

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT	4
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	6
6. SUMMARY	7
7. INTRODUCTION	8
8. MATERIALS AND METHODS	8
9. EXPERIMENTAL PROCEDURES1	1
10. ANALYSIS OF DATA14	4
11. MAINTENANCE OF RAW DATA AND RECORDS14	4
12. RESULTS	5
13. CONCLUSION	6
14. REPORT REVIEW10	6
15. REFERENCE	7

(6)

SLI Study No. 3596.11

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

2.	Summary of Aerosol Generation and Chamber Environmental Data Individual Clinical Observations Individual Body Weight Data Individual Gross Necropsy Observations	.19 .23
<u>Fig</u>	ure	
1.	Multistage 10L Nose-Only Inhalation Chamber	27
<u>Ap</u>	pendices	
Α.	Preliminary Aerosol Generation Trials	28
В.	Analytical Chemistry Report	32
C.	Individual Aerosol Generation and Chamber Environmental Data	.41

6. SUMMARY

The four-hour nose-only inhalation toxicity of Spray--Bravo was evaluated in Sprague Dawley rats. A limit test was performed in which a group of five male and five female rats received a four-hour nose-only inhalation exposure to a time-weighted average aerosol concentration (analytically determined) of 2.40 mg/L. Following the exposure, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all limit test animals at the time of death or scheduled euthanasia (day 14).

Mortality occurred during the limit test as follows:

Dose Level		No. Dead/No. Dosed	
(mg/L)	Males	Female	Combined
2.40	2/5	0/5	2/10

All mortality occurred by study day 1. Although mortality was observed in 2/5 males the LD50 is still estimated to be greater than 2.40 mg/L, which is well above the EPA required 2.00 mg/L. The most notable clinical abnormalities observed during the study included decreased activity, breathing abnormalities, decreased defecation, rough haircoat, nasal discharge and dark material around the facial area. A slight body weight loss was noted for two males during the day 0 to 7 body weight interval. Body weight gain/maintenance was noted for all other surviving animals during the test period. The most notable gross internal findings were observed in the animals that died and included dark red lobes of the lung and abnormal content in the small intestine. No significant gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute inhalation LC50 of Spray-Bravo was estimated to be greater than 2.40 mg/L in the rat (which was well above the EPA required 2.00 mg/L).

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Bravo in Sprague Dawley rats when administered by a four-hour nose-only inhalation exposure. This study was intended to provide information on the potential health hazards of the test article with respect to inhalation exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines OPPTS 870.1300, Acute Inhalation Toxicity, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 26, 2002, (GLP initiation date). The in-life phase of the study was initiated with test article administration on August 1, 2002 (day 0), and concluded with terminal euthanasia on August 15, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
SprayBravo ^a	S02.002.3596	Cloudy pale amber liquid	05/31/02	None
Ingredients: ^b				
Herbicide: Roundup SL				None
Lot No.: 4010/4212				provided
4397/4272				•
4333/4340				
4379/4076				
4397/4333				
Surfactant: Cosmo Flux-411F				None
Lot No.: Unknown ^a Sample pooled at SLI from five dif				provided

^aSample pooled at SLI from five different mixes of Spray-Bravo (top/middle/bottom). ^bIngredients used in the five Spray-Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.8.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was utilized as received from the Sponsor and dispensed fresh on the day of dosing. The test article was stirred prior to and continuously during exposure.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 69-78°F (21-26°C) and 34-60%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study (except during the time that the animals were acclimated to the exposure tubes and maintained in the inhalation room for the

exposure procedure). The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study (except during the time that the animals were acclimated to the exposure tubes and maintained in the inhalation room for the exposure procedure). The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized (Alpha DS-10 AcuTox) random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 10 weeks of age and weighed 305-324 g on the day of exposure. The female animals were approximately 9 weeks of age and weighed 191-200 g on the day of exposure.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

9.1.1. Test Article Volatility Determination

The volatility of the test article relative to a distilled water standard was determined prior to experimental initiation. This procedure was performed in order to determine if the test article had sufficiently low volatility to allow for an accurate gravimetric determination of the aerosol concentration. A known quantity of the test article was placed on a preweighed filter disk and was allowed to evaporate for a total of ten minutes. The test article weight was determined each minute and the amount of evaporation of the test article was then determined. The results of this volatility trial indicated that the test article evaporation rate (0.52 mg/minute) was comparable to the SLI determined distilled water evaporation rate (0.55 mg/minute); therefore was considered to not be volatile.

9.1.2. Preliminary Aerosol Generation Trials

Prior to experimental initiation, preliminary aerosol generation trials were conducted. These trials were performed in order to determine the most efficient means of generating an aerosol of the appropriate concentration while utilizing equipment that would reduce the aerodynamic particle size. Data obtained during the preliminary aerosol generation trials are presented in Appendix A.

9.2. Limit Test

9.2.1. Aerosol Generation Equipment

The test aerosol was generated with a Pistol Spraying System and a Master Flex Pump and Pump Heads 77200-60 and 7523-30. Conditioned high pressure external air was used in generating the test atmosphere. The aerosol was blown through a 5L Elutriator, the nose-only inhalation chamber and then vented from the chamber to an air treatment system which consisted of a prefilter, a HEPA filter, a charcoal bed and a water scrubbing tower (see Figure 1).

9.2.2. Dosing

On day 0, the animals chosen for the limit test were weighed, placed in a noseonly exposure tube and allowed to acclimate to the exposure tube for at least one hour. Animals that appeared to have been acclimated to the exposure tube (i.e., minimal struggling and no inversion) were considered to be acceptable and removed from the exposure tube and returned to their cages until initiation of the

aerosol exposure. Animals that did not appear to acclimate to the exposure tube were not acceptable and were removed from the exposure tube and returned to their cages.

The acceptable animals were then placed in exposure tubes and the tubes inserted into the Multistage 10L nose-only inhalation chamber and the test article aerosolized at the following level:

Exposure Level	No. of	Animals
(mg/L)	Male	Female
2.40	5	5

The aerosol exposure consisted of a 4-minute T99 equilibration period, a 240minute exposure period and a 4-minute de-equilibration period equal to the T99 equilibration period. After each aerosol exposure, animals were removed from the exposure tubes and residual test article was removed from the animal's exterior surfaces (where practical) by wiping the haircoat with a towel. The animals were then returned to ad libitum feed and water. The following parameters were measured during the exposure.

9.2.2.1. Chamber Air Flow

Air flow readings were recorded at the initiation of the T99 equilibration period, at approximate 30-minute intervals during the aerosol exposure and at the conclusion of the de-equilibration period.

9.2.2.2. Aerosol Concentration

For the analytical concentration, the test article aerosol concentration was collected in the inhalation chamber utilizing impinger glassware containing 20 mL of methanol per tube. Three impingers were placed in tandem and the aerosol atmosphere was drawn through the three sample tubes to collect the test article. Three impingers were utilized in order to ensure that all test article was collected in the initial tube and none had escaped into the second or third (last) tube. A 2 L sample of the aerosol was drawn from the breathing zone of the chamber for two minutes (4 L of atmosphere). The aerosol concentration was measured at the beginning of the aerosol exposure (after equilibration), then hourly during the exposure and at the conclusion of the aerosol exposure (before de-equilibration) for a total of five samples. However, the initial sampling collection procedure did not produce a viable sample (confirmed by analytical chemistry to not contain any test article) due to a probable loose connection tube. Therefore, the second sample collected was considered the aerosol concentration during the entire first hour. The samples were analyzed by Springborn Laboratories, Inc., for glyphosate, a non-volatile component of the

test article. These analyses were performed in order to determine the analytical (actual) concentrations of the aerosol in the chamber for each sampling period. The average time weighted analytical concentration of the test atmosphere was then calculated for the exposure. Chemistry methods and results are detailed in the Analytical Chemistry Report (Appendix B).

Note: There were no changes in air flow nor test article flow over this time period to the second sampling.

9.2.2.3. Chamber Temperature and Humidity

The chamber temperature and humidity were measured electronically and recorded at approximate 30-minute intervals during the aerosol exposure.

9.2.2.4. Aerosol Aerodynamic Particle-Size Distribution

The aerosol aerodynamic particle-size distribution was determined three times during the aerosol exposure using the ITP 7 Stage Cascade Impactor. Each stage of the impactor was fitted with a preweighed glass fiber filter. Five liters per minute of the chamber air were drawn through the impactor and the change in weight of each filter was then determined and recorded. The mean particle-size distribution was subsequently plotted using an Excel computer adaptation of the manual method. The Mass Median Aerodynamic Diameter, Geometric Standard Deviation and percentage of particles $\leq 4.0 \mu$ were then determined. At least one hour passed between each aerosol particle-size analysis.

9.2.2.5. Chamber Oxygen

Chamber oxygen content was measured and recorded at approximate 30-minute intervals during the aerosol exposure.

9.2.3. Clinical Observations

The limit test animals were observed for clinical abnormalities during the aerosol exposure, a minimum of two times on study day 0 (post-exposure) and daily thereafter (days 1-14). A general health/mortality check was performed twice daily (in the morning and in the afternoon).

9.2.4. Body Weights

Individual body weights were obtained for the limit test animals prior to dosing on day 0 and for all surviving animals on days 7 and 14. Animals found dead after day 0 were also weighed.

9.2.5. Gross Necropsy

All limit test animals that died spontaneously during the study or were euthanized by carbon dioxide inhalation at study termination (day 14) were necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.3. Protocol Deviations

The temperature of the animal room [69-78°F (21-26°C)] exceeded the preferred range [66-77°F (19-25°C)] during this study. This occurrence was considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

Data from the limit tests were analyzed and an LC50 value estimated as follows:

- < 50% Mortality: LC50 was estimated as greater than the administered dose.
- = 50% Mortality: LC50 was estimated as equal to the administered dose.
- > 50% Mortality: LC50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females. The aerodynamic particle-size distribution of the test article aerosol was plotted using an Excel computer adaptation of the three cycle logarithmic probability paper as per the ITP Cascade Impactor instruction manual. The Mass Median Aerodynamic Diameter, Geometric Standard Deviation and particles \leq 4.0 µ was determined based on the plotted distribution.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Aerosol Generation and Chamber Environmental Data

12.1.1. Aerosol Generation Data

Individual Data: Table 1

The average time-weighted analytical concentration for the aerosol exposure was determined to be 2.40 mg/L. The mass median aerodynamic diameter and geometric standard deviation of the sampled particles were 3.2 μ ± 1.96. The percentage of particles \leq 4.0 μ was determined to be 63%.

12.1.2. Chamber Environmental Data

Individual Data: Table 1

Chamber temperature and relative humidity for the aerosol exposure ranged from 74.9-77.0°F and 57.1-60.6%, respectively. Oxygen content was maintained at 21% throughout the exposure.

12.2. Limit Test Data

12.2.1. Mortality

Individual Data: Table 2

All mortality occurred by study day 1.

12.2.2. Clinical Observations

Individual Data: Table 2

The most notable clinical abnormalities observed during the study included transient incidences of decreased activity, breathing abnormalities, decreased defecation, rough haircoat, nasal discharge and dark material around the facial area. No positive findings were noted at the time of observation during the 4 hour exposure period.

12.2.3. Body Weight Data

Individual Data: Table 3

A slight body weight loss was noted for two males during the day 0 to 7 body weight interval. Body weight gain/maintenance was noted for all other surviving animals during the test period.

12.2.4. Gross Necropsy

Individual Data: Table 4

The most notable gross internal findings were observed in the animals that died and included dark red lobes of the lung and abnormal content in the small intestine. No significant gross internal findings were observed at necropsy on study day 14.

13. CONCLUSION

Under the conditions of this test, the acute inhalation LC50 of Spray-Bravo was estimated to be greater than 2.40 mg/L in the rat (which was well above the EPA required 2.00 mg/L).

Kimberly L. Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S.

Toxicologist

Date

Date

15. REFERENCE

1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.

TABLE 1 SLI STUDY NO.: 3596.11 AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS CLIENT: INL/A, U.S. DEPARMENT OF STATE SUMMARY OF AEROSOL GENERATION AND CHAMBER ENVIRONMENTAL DATA	NN TOXICITY STUDY IN RATS GENERATION AND MENTAL DATA
	EXPOSURE LEVEL (MG/L)
	2.40
CHAMBER AND EXPOSURE DATA	
CHAMBER VOLUME (L):	10
ELUTRIATOR VOLUME (L):	5
MEAN AIR FLOW RATE (L/MIN):	22
MEAN AIR CHANGES PER HOUR:	88.24
T99 EQUILIBRATION PERIOD (MIN.):	4
EXPOSURE TIME (MIN):	240
DE-EQUILIBRATION PERIOD (MIN):	4
AEROSOL CONCENTRATIONS	
CALCULATED NOMINAL CONCENTRATION (MG/L):	297.69
TIME-WEIGHTED MEAN ANALYTICAL CONCENTRATION (MG/L):	2.40
AEROSOL PARTICLE-SIZE ANALYSIS	
MASS MEDIAN AERODYNAMIC DIAMETER (µ):	3.2
GEOMETRIC STANDARD DEVIATION:	±1.96
PERCENTAGE OF PARTICLES \leq 4.0 µ (%):	63
CHAMBER ENVIRONMENTAL DATA	
TEMPERATURE RANGE (°F):	74.9-77.0
HUMIDITY RANGE (%):	57.1-60.6
OXYGEN CONTENT (%):	21

(18)

(19)

STUDY NO.: 3596.11 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

(POSITIVE FINDINGS)	DAY OF STUDY	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		GRADE CODE: 1=SLIGHT 2=MODERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
		NS	A5624 (CONTINUED) FEW FECES ROUGH COAT COOL TO THE TOUCH NASAL DISCHARGE-CLEAR DARK MATERIAL AROUND MOUTH DARK MATERIAL AROUND MOUTH	2=MODERATE 3=S
2.40 MG/L		OBSERVATI ONS	CONTINUED) FEW FECES ROUCH COAT COOL TO THE TOU NASAL DI SCHARCE DARK MATERIAL A DARK MATERIAL A	: 1=SLI GHT
MALES		MALE#	A5624 (GRADE CODE

PAGE 2

PAGE 3							
	STUDY IN RATS ONS	Y 6 7 8 9 10 11 12 13 14	۵. ۵	۵.	۵.	4 4 4	B=BI LATERAL
TABLE 2	AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)	DAY OF STUDY 0 1 2 3 4 5 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4	4 4 4 4 4 4	र र र र र र र न र र र र न र र र	SENT L=LEFT R=RIGHT
	AN ACUTE NOSE-O' INDIVI			OSE	YE(S)		ATE 3=SEVERE P=PRESENT
STUDY NO.: 3596, 11 INL/A, U.S. DEPARTMENT OF STATE	2.40 MG/L	OBSERVATI ONS	SCHEDULED EUTHANASI A CONGESTED BREATHI NG LABORED BREATHI NG RALES GASPING FEW FECES SOFT STOOL	SCHEDULED EUTHANASIA CONGESTED BREATHING LABORED BREATHING RALES FEW FECES DARK MATERIAL AROUND NOSE	SCHEDULED EUTHANASI A CONCESTED BREATHI NG LABORED BREATHI NG RALES FEW FECES DARK MATERIAL AROUND EYE(S)	SCHEDULED EUTHANASIA CONGESTED BREATHING LABORED BREATHING RALES FEW FECES NO FECES ROUGH COAT URINE STAIN	DE: 1=SLIGHT 2=MODERATE
STUDY NO. INL/A, U.	FEMALES	FEMALE#	A5747	A5748	A5750	A5751	GRADE CODE:

Annex 56-C

495

(21)

STUDY NO.: 3596.11 INL/A, U.S. DEPARTMENT OF STATE

TABLE 2

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

(CONTRATT ANTICOJ)	DAY OF STUDY	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ط ط ط	2=MODERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
		NS		
2.40 MG/L		OBSERVATI ONS	A5752 SCHEDULED EUTHANASIA CONGESTED BREATHING FEW FECES	GRADE CODE: 1=SLI GHT
FEMALES 2.40 MG/L		FEMALE#	A5752 S	GRADE CODE:

PAGE 4

STUDY NO.: 3596.11 INL/A, U.S. DEPARTMENT OF STATE

TABLE 3

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

I NDI VI DUAL BODY WEI GHTS (GRAMS)

	DAV	5	VUIT		
ANI MAL#	0	7		14 AT DEATH (DAY)	
A5619	305		1	271 (1)	
A5621	324	329	354		
A5622	322	312	353		
A5620	305	296	316		
A5624	314			262 (1)	
MEAN	314	312	341		
S. D.	9.0	16. 5	21.7		
N	5	e	e		

PAGE 2

STUDY NO.: 3596.11 INL/A, U.S. DEPARTMENT OF STATE

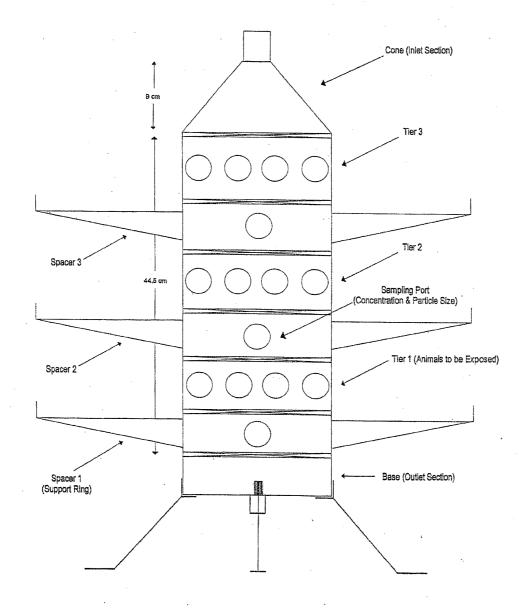
TABLE 3

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS

	ÁTH (DAY)					
	14 AT DE	193 236		208	219	
	DAY OF STUDY 0 7	19	219	204	209	12.5 5
	DAY 0	191 196	200	199 194	196	3.7 5
FEMALES 2. 40 MG/L	1 1 1					

(24)

			AIE TABLE 4	
			AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS	
MALES	2.40 MG/L		I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	
	DAY OF DEATH	STUDY DAY	OBSERVATI ON	FATE
A5619	2-AUG-02		HAI RCOAT: DARK MATERIAL; PRESENT AROUND NOSE, RED TESTES: SMALL: PRESENT LEFT, APPROXIMATELY 50% SMALLER THAN NORMAL EPI DI DYM DES: MISSHAPEN; PRESENT EPI DI DYM DES: MISSHAPEN; PRESENT LEFT, CORPUS ELONGATED; CAPUT IS UNATTACHED TO TESTIS LUNG: DARK RED; PRESENT ALL LOBES SMALL LOBES SMALL INESTINE: CONTENT ABNORMAL; PRESENT ENTIRE TRACT, YELLOW MUCOID MATERIAL TO REDDI SH-YELLOW MUCOID MATERIAL	FOUND DEAD
A5621	15- AUG- 02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A5622	15-AUG-02	14	HAIRCOAT: DARK MATERIAL: PRESENT AROUND LEFT EYE, RED	SCHEDULED EUTHANASIA
A5620	15-AUG-02	14	ALL TISSUES WITHIN NORMAL LIMITS	SCHEDULED EUTHANASIA
A5624	2-AUG-02	-	HAIRCOAT: DARK MATERIAL; PRESENT AROUND NOSE, MOUTH AND FOREPAWS; RED HAIRCOAT: WET MATTING; PRESENT VENTRAL THORAX, CLEAR COLORLESS; ANOGENITAL AND UROGENITAL AREAS, YELLOW SMALL INTESTINE: CONTENT ABNORMAL: PRESENT ENTIRE TRACT, YELLOW TO RED MUCOID MATERIAL LUNG: DARK RED; PRESENT ALL LOBES	SCHEDULED EUTHANASIA


(25)

499

PAGE 2			FATE	SCHEDULED EUTHANASIA				
ATE TABLE 4	AN ACUTE NOSE-ONLY INHALATI ON TOXICITY STUDY IN RATS	I NDI VI DUAL GROSS NECROPSY OBSERVATI ONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS				
r of ST			STUDY DAY	14	14	14	14	14
STUDY NO.: 3596.11 INL/A, U.S. DEPARTMENT OF STATE		2.40 MG/L	DAY OF DEATH	15-AUG-02 14	15-AUG-02	15-AUG-02	15-AUG-02	15-AUG-02
STUDY NO.: INL/A, U.S		FEMALES	ANI MAL#	A5747	A5748	A5750	A5751	A5752

Annex 56-C

(26)

MULTI-STAGE 10 L NOSE ONLY INHALATION CHAMBER

Figure 1

(28)

SLI Study No. 3596.11

APPENDIX A

Preliminary Aerosol Generation Trials

1. PRELIMINARY AEROSOL GENERATION TRIALS

Prior to experimental initiation, preliminary aerosol generation trials were conducted. These procedures were performed in order to determine the most efficient means of generating an aerosol of the test article. The type of equipment used during each aerosol trial procedure is presented in Trial Table 1. In each trial, attempts were made to generate the highest concentration of the test article while utilizing equipment that would minimize the aerodynamic particle size of the aerosol.

The analytical chemistry was initially attempted by extracting the active (glyphosate) from the glass fiber filters. However, for this material, the results were inaccurate and the collection procedure changed to collect the atmosphere test article sample directly into a liquid (using 20 mL methanol in an impinger). Four impingers were utilized in tandem to insure that all of the test article was trapped. Based on these results of less than 10% test article in the second, third and fourth impingers, no more than two impingers were needed for the main study. However, three impingers were utilized as a precaution. In addition, the sample collection procedure was the same as utilized for Trial #2 (2 L of atmosphere drawn through the impingers for 2 minutes for a total of 4 L of atmosphere). In order to ensure a \geq 2.00 target dose, the test article flow rate was increased to 5.0 mL/minute.

Using the equipment design determined by the aerosol generation trials, preliminary results from previous trial work indicated the aerosol aerodynamic particle-size distribution would be acceptable.

TRIAL TABLE 1	PRELIMINARY AEROSOL GENERATION TRIALS
SLI STUDY NO.: 3596.11	CLIENT: INL/A, U.S. DEPARTMENT OF STATE PRELI

LE IG/L)	р	ΠN			QN					ΠN						ΠN						
/IUM ATTAINAB NTRATIONS (M IMPINGERS	С	0.06			0.06					0.02						0.02						
MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L) IMPINGERS	q	0.06			0.06					0.02						0.05						
CON	а	1.07			1.63					1.31						1.51						
TEST ARTICLE CONCEN	TRATION (%) ^a	100			100					100						100						-
INPUT AIR	(ISI)	30			30					30						30						
	EQUIPMENT USED	One Multistage 10L Nose-Only Chamber 5I Flutriator	Master Flex Pump and Pump Heads 7523-30 and 77200-60 Scraving Systems District Air/Fluid Mixing No77le	14 gauge tubing size Samole Collection: 2 L of atmosphere for 5 minutes (2 L x 5 min).	One Multistage 10L Nose-Only Chamber	Master Flex Pump and Pump Heads 7523-30 and 77200-60	Spraying Systems, Pistol Air/Fluid Mixing Nozzle 4.0 ml /min prime sneed	14 gauge tubing size	Sample Collection: 2 L of atmosphere for 2 minutes (2 L x 2 min).	One Multistage 10L Nose-Only Chamber	UL Elutitatu Maatar Flav Dirma and Dirma Haada 7593 30 and 77900 60	Master Flex Fump and Fump Heads / 223-50 and // 200-50 Spraving Systems, Pistol Air/Fluid Mixing Nozzle	eq	14 gauge tubing size	Sample Collection: 1 L of atmosphere for 5 minutes (1 L x 5 min).	One Multistage 10L Nose-Only Chamber	oL Elutriator Master Flex Plimp and Plimp Heads 7503-30 and 77000-60	Spraving Systems. Pistol Air/Fluid Mixing Nozzle	4.0 mL/min pump speed	14 gauge tubing size	Sample Collection: 1 L of atmosphere for 5 minutes (1 L x 5 min).	^a Pooled test article.
TRIAL	NO.	-			2					з						4						^a Pooled

PAGE 1

(30)

ß	
111	
ō	
7	
~	
ш.	

SLI STUDY NO.: 3596.11 CLIENT: INL/A, U.S. DEPARTMENT OF STATE PRELIMINARY AEROSOL GENERATION TRIALS

			TEST ARTICLE	MAX	MUM A	TTAIN	ABLE ((MG/L)	MAXIMUM ATTAINABLE CONCENTRATIONS (MG/L)	NTRATI	SNO
TRIAL		INPUT AIR	CONCEN			N	IMPINGERS	RS		
NO	EQUIPMENT USED	(ISd)	TRATION (%) ^a	в	q	ပ	q	e	f	D
5	One Multistage 10L Nose-Only Chamber	30	100	1.65	0.13	QN	QN	ΩN	ΠD	QN
	5L Elutriator									
	Master Flex Pump and Pump Heads 7523-30 and									
	77200-60									
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle									
	4.0 mL/min pump speed									
	14 gauge tubing size									
	Sample Collection: 1 L of atmosphere for 1 minute									
	(1 L x 1 min).									
9	One Multistage 10L Nose-Only Chamber	30	100	1.31	0.20	Q	QN	QN	ΠD	DN
	5L Elutriator									
	Master Flex Pump and Pump Heads 7523-30 and									
	77200-60									
	Spraying Systems, Pistol Air/Fluid Mixing Nozzle									
	4.0 mL/min pump speed									
	14 gauge tubing size									
	Sample Collection: 1 L of atmosphere for 1 minute									
	(1 L x 2 min).									
	^a Pooled test article.									
+IA	Noto: Torradiae > 2 00 me/l analytical concentration for Trialo E 6 - ND - Noro Defected		- Ness Datesto	7						

(31)

Note: Targeting ≥ 2.00 mg/L analytical concentration for Trials 5-6. ND = None Detected.

(32)

SLI Study No. 3596.11

APPENDIX B

Analytical Chemistry Report

(33)

SLI Study No. 3596.11

1. SPRAY--BRAVO ANALYSIS

The analytical method for the analysis of the glyphosate component of Spray--Bravo was validated prior to the analytical chamber concentration analyses performed at Springborn Laboratories, Inc. This method was utilized to determine the inhalation chamber concentration during the Acute Nose -Only Inhalation Toxicity Study.

1.1. Experimental System

1.1.1. HPLC System

HPLC Model: Pump: Injector: Detector: Data System: Precolumn: Column: Temperature: Detection: Mobile Phase: Gradient:	Waters Waters 600E Waters WISP 717 Waters 2487 H-P 3396B Integrator Phenomenex, SecurityGuard, C18, 4.0 x 3.0 mm ID Phenomenex, Spherex, C18, 5 μ , 250 x 4.6 mm ID Ambient 500 nm, 0.4000 AUFS A: 0.05 M HCO ₂ NH ₄ , pH 3.6/5% Acetonitrile (ACN); B: 100% ACN 100% A hold for 6 minutes; linear change to 25% A/75% B
Gradient.	over 1 minute; hold for 5 minutes; linear change to 25% A75% D A over 1 minute; hold at 100% A for 15 minutes.
Flow Rate:	1.0 mL/min
Injection Volume:	10 µL
1.1.2. Apparatus	
Balance:	Mettler AG 245, accuracy of 0.0001 gram
Glassware: Filters:	Assorted volumetric glassware
Fillers.	Gelman, glass fiber; Millipore 0.2μ Nylon-66; Whatman Puradisc 25PP 0.45μm
Shaker:	Labline, Multi-Wrist Shaker
Oven:	Boekel Model 107905
Pipet:	Mettler, VoluMate, 200-1000 μL

1.1.3. Solutions and Reagents

1.1.3.1. Reagents

Water, Fisher, HPLC Grade, Lot # 024948, 025012 Acetonitrile, Baker, HPLC Grade, Lot # M15811 Methanol, Fisher, HPLC Grade, Lot # 011803, 023006 NBD Chloride, Aldrich, 98%, Lot #12214L1 Hydrochloric Acid, Fisher, ACS Grade, Lot # 012161 Potassium Tetraborate Tetrahydrate: Aldrich, 99%, Lot # 15325D1 Formic Acid, Fisher, Laboratory Grade, Lot # 003630 Ammonium Formate, Fisher, Certified, Lot # 990125

1.1.3.2. Solutions

<u>0.37 M Borate Solution</u>: Prepared by dissolving approximately 11.44 g of potassium tetraborate tetrahydrate in 100 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>1.2 N HCl</u>: Prepared by dissolving 10 mL of HCl in 90 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>25 mM NBD-Cl</u>: Prepared by dissolving approximately 2.5 g of NBD-Cl in 500 mL of methanol. The resulting solution was stable for 6 months under ambient storage conditions.

<u>Mobile Phase A</u>: Prepared by dissolving approximately 3.153 g of ammonium formate in 1900 mL of water. The pH was adjusted to approximately 3.6 with formic acid. Then added 100 mL of acetonitrile. The resulting solution was mixed thoroughly, filtered through a 0.2μ Nylon-66 filter and degassed by helium sparging prior to use. Different volumes were used using the same ratio of components.

Mobile Phase B: Acetonitrile used 100% as received.

Diluent: All standards and samples were diluted in methanol.

<u>Stock Standard Solution</u> (Impinger Trial, mg/L): For the $2 \times 5L$ trial, prepared by dissolving 65.8 mg of the Spray Bravo formulation in a 25 mL flask with diluent. For the $2 \times 2L$ trial, prepared by dissolving 13.4 mg of the Spray

Bravo formulation in a 25 mL flask with diluent. For the $1 \times 5L$ trial, prepared by dissolving 22.5 mg of the Spray Bravo formulation in a 25 mL flask with diluent. For the $1 \times 1L$ trial, prepared by dissolving 7.8 mg of the Spray Bravo formulation in a 200 mL flask with diluent.

<u>Stock Standard Solution</u> (Exposure #1): Prepared by dissolving 13.2 mg of Spray Bravo formulation in a 25 mL flask with diluent.

<u>Standard Solutions</u> (Impinger Trial): Prepared by serially diluting the stock standard solution with methanol. The final concentrations of the solutions were in the range of approximately 0.10 to 0.52 mg/mL ($2 \min \times 5 L$); 0.053 to 0.26 mg/mL ($2 \min \times 2 L$); 0.09 to 0.45 mg/mL ($1 \min \times 5 L$); and 0.0039 to 0.019 mg/mL ($1 \min \times 1 L$). The $2 \min \times 5 L$ solutions were then further diluted in diluent at a ratio of 4:10 prior to derivatization, due to the higher concentration.

<u>Standard Solutions (Exposure #1)</u>: Prepared by serially diluting the stock standard solution with methanol. The final concentrations of the solutions were in the range of approximately 0.26 to 1.3 mg/mL.

<u>Chamber Concentration Solutions (Exposure # 1)</u>: Prepared by passing the analytical chamber sample through three impingers, each filled with 20 mL of diluent. The diluent from each impinger was collected and derivatized separately.

<u>Derivatization Procedure</u>: In order to analyze the glyphosate component, a precolumn derivatization was performed by adding 1.2 mL of the appropriate control, standard, or sample solution to a labeled scintillation vial. Both 0.8 mL of the borate solution and 2.4 mL of the NBD-Cl solution were added to each vial. The vials were then capped and shaken by hand prior to being heated in an oven at 80° C for 30 minutes. After removal from the oven, the vials were allowed to cool for 10 minutes followed by the addition of 0.9 mL of the HCl solution. After the vials were again shaken by hand, they were allowed to stand for 10 minutes in order for incipient precipitation to occur. These solutions were then transferred to injection vials.

- 1.1.4. Analytical Procedures
- 1.1.5. Standard Curve Analysis

The peak area of the glyphosate acid component of each standard were determined, measured, combined, and plotted as a function of concentration to generate a standard curve. The actual values used for the calculations are shown in Chemistry Tables 1, 2, 3, 4, and 5.

- 1.1.6. Sample Analysis
 - The peak areas of the glyphosate acid component of each sample were measured and combined and then the concentration was determined by linear fit to the standard curve. The actual values used for the calculations are shown in Chemistry Tables 1, 2, 3, 4, and 5.
- 1.2. Results and Conclusions
- 1.2.1. Analytical Chamber Concentration

The actual sample results of the trial work are shown in Chemistry Tables 1, 2, 3, and 4. The actual sample results of the analytical chamber analysis are shown in Chemistry Table 5.

M. Gardner Clemons, B.A. Manager of Analytical Chemistry and Pharmacy. 1.7.2003

Date

Chemistry Table 1

Standard Curve and Sample Analysis Values for Impinger Trial Work for $2\times5\,L$

	Theoretical Conc.		Analytical Chamber
Sample No.	(mg/L)	Peak Area	Conc. (mg/L)
Std 1A	0.2632	45363	NA
Std 2A	0.5264	108136	NA
Std 3A	0.7896	144205	NA
Std 4A	1.053	198178	NA
Std 5A	1.316	259386	NA
Trial # 1a	NA	304141	1.567
Trial # 1b	NA	8136	0.06353
Trial # 1c	NA	6969	0.05760
Trial # 1d	NA	ND	ND

Correlation coefficient = 0.997; NA = Not applicable; ND = Not Detected.

(38)

SLI Study No. 3596.11

Chemistry Table 2

Standard Curve and Sample Analysis Values for Impinger Trial Work for $2 \times 2 L$

	Theoretical Conc.		Analytical Chamber
Sample No.	(mg/L)	Peak Area	Conc. (mg/L)
Std 1B	0.1340	26211	NA
Std 2B	0.2680	54882	NA
Std 3B	0.4020	85616	NA
Std 4B	0.5360	115986	NA
Std 5B	0.6700	131941	NA
Trial # 2a	NA	331783	1.625
Trial # 2b	NA	13774	0.06202
Trial # 2c	NA	12332	0.05493
Trial # 2d	NA	ND	ND

Correlation coefficient = 0.997; NA = Not applicable; ND = Not Detected.

Chemistry Table 3

Standard Curve and Sample Analysis Values for Impinger Trial Work $1\times5\,L$

	Theoretical Conc.		Analytical Chamber Conc.
Sample No.	(mg/L)	Peak Area	(mg/L)
Std 1C	0.1800	40947	NA
Std 2C	0.3600	86151	NA
Std 3C	0.5400	133858	NA
Std 4C	0.7200	182217	NA
Std 5C	0.9000	250029	NA
Trial # 3a	NA	358270	1.309
Trial # 3b	NA	19872	0.1243
Trial # 3c	NA	21161	0.1288
Trial # 3d	NA	ND	ND
Trial # 4a	NA	415221	1.508
Trial # 4b	NA	26568	0.1477
Trial # 4c	NA	17339	0.1154
Trial # 4d	NA	ND	ND

Correlation coefficient = 0.997; NA = Not Applicable; ND = Not Detected

Chemistry Table 4

Standard Curve and Sample Analysis Values for Impinger Trial Work $1\times1\,L$

	Theoretical Conc.		Analytical Chamber Conc.
Sample No.	(mg/L)	Peak Area	(mg/L)
Std 1D	0.03900	ND	NA
Std 2D	0.07800	3520	NA
Std 3D	0.1170	5630	NA
Std 4D	0.1560	6869	NA
Std 5D	0.1950	8931	NA
Trial # 5a	NA	74105	1.651
Trial # 5b	NA	6043	0.1322
Trial # 5c	NA	ND	ND
Trial # 5d	NA	ND	ND
Trial # 5e	NA	ND	ND
Trial # 5f	NA	ND	ND
Trial # 5g	NA	ND	ND
Trial # 6a	NA	58780	1.309
Trial # 6b	NA	9271	0.2042
Trial # 6c	NA	ND	ND
Trial # 6d	NA	ND	ND
Trial # 6e	NA	ND	ND
Trial # 6f	NA	ND	ND
Trial # 6g	NA	ND	ND

* Correlation coefficient = 0.995; NA = Not Applicable; ND = Not Detected

SLI Study No. 3596.11

APPENDIX C

Individual Aerosol Generation and Chamber Environmental Data

(42)

SLI Study No. 3596.11

2.40 mg/L Exposure Level

(43)

SLI Study No. 3596.11

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS CHAMBER ENVIRONMENTAL DATA EXPOSURE: 2.40 MG/L

TIME	TEMPERATURE	RELATIVE HUMIDITY	OXYGEN CONTENT
(MIN.)	(°F)	(%)	(%)
0	77.0	57.1	21
30	74.9	60.2	21
60	75.1	60.6	21
90	76.0	58.2	21
120	75.6	59.8	21
150	75.6	59.6	21
180	75.6	59.8	21
210	75.9	59.5	21
240	75.6	59.8	21

Standard Curve and Sample Analysis Values for Impinger Exposure #1

	Theoretical Conc.		Analytical Chamber Conc.
Sample No.	(mg/L)	Peak Area	(mg/L)
Std 1	0.1320	22300	NA
Std 2	0.2640	41117	NA
Std 3	0.3960	74124	NA
Std 4	0.5280	87613	NA
Std 5	0.6600	110814	NA
1A	NA	ND	ND
1B	NA	ND	ND
1C	NA	ND	ND
2A	NA	344241	2.032
2B	NA	8366	0.04860 ^a
2C	NA	8105	0.04706 ^a
3A	NA	324116	1.913
3B	NA	11740	0.06852 ^a
3C	NA	8177	0.04748 ^a
4A	NA	510006	3.011
4B	NA	20840	0.1223ª
4C	NA	7258	0.04206 ^a
5A	NA	566238	3.343
5B	NA	8150	0.04732 ^a
5C	NA	9333	0.05431 ^a

* Correlation coefficient = 0.995; NA = Not Applicable; ND = Not Detected ^aLess than 10%; therefore, not utilized in determining chamber concentration.

(45)

SLI Study No. 3596.11

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: A EXPOSURE: 2.40 MG/L

	Effective					
	Cutoff	Filter W	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	103.3	103.5	0.2	2.6	97.4
2	6.11	102.8	103.6	0.8	10.5	86.8
3	3.70	102.6	104.6	2.0	26.3	60.5
4	2.22	103.2	106.1	2.9	38.2	22.4
5	1.39	102.7	104.0	1.3	17.1	5.3
6	0.79	103.5	103.8	0.3	3.9	1.3
7	0.50	102.9	102.9	0.0	0.0	1.3
Filter	-	103.4	103.5	0.1	1.3	
	-	Total of Differ	ence Weights:	7.6		

Mass Median Aerodynamic Diameter = 3.1 microns

3.1 microns 1.90 66 %

Geometric Standard Deviation = Percentage \leq 4.0 microns =

(46)

SLI Study No. 3596.11

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: B EXPOSURE: 2.40 MG/L

	Effective					
	Cutoff	Filter W	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	103.1	103.2	0.1	1.2	98.8
2	6.11	102.7	103.9	1.2	14.5	84.3
3	3.70	102.4	104.4	2.0	24.1	60.2
4	2.22	102.9	105.8	2.9	34.9	25.3
5	1.39	102.5	103.9	1.4	16.9	8.4
6	0.79	102.8	103.3	0.5	6.0	2.4
7	0.50	103.3	103.3	0.0	0.0	2.4
Filter	-	102.9	103.1	0.2	2.4	
		Total of Differ	ence Weights:	8.3		

Mass Median Aerod	vnamic Diameter =

2.8 microns 1.93

Percentage ≤ 4.0 microns =

Geometric Standard Deviation =

70 %

(47)

SLI Study No. 3596.11

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA SAMPLE NO.: C EXPOSURE: 2.40 MG/L

	Effective		• • • • • •	D:"		
	Cutoff	Filter We	eights (mg)	Difference		Cumulative
Stage	Diameter	Pre-sample	Post-sample	Weights	% of Total	% <ecd< td=""></ecd<>
1	10.00	103.4	104.1	0.7	8.3	91.7
2	6.11	102.2	103.5	1.3	15.5	76.2
3	3.70	103.0	105.0	2.0	23.8	52.4
4	2.22	102.5	105.2	2.7	32.1	20.2
5	1.39	101.7	103.1	1.4	16.7	3.6
6	0.79	102.0	102.2	0.2	2.4	1.2
7	0.50	102.0	102.0	0.0	0.0	1.2
Filter	-	102.5	102.6	0.1	1.2	
		Total of Differ	ence Weights:	8.4		

Mass Median Aerodynamic Diameter =	3.7 microns
Geometric Standard Deviation =	2.06
Percentage \leq 4.0 microns =	54 %

(48)

SLI Study No. 3596.11

AN ACUTE NOSE-ONLY INHALATION TOXICITY STUDY IN RATS AERODYNAMIC PARTICLE SIZE DATA

EXPOSURE: 2.40 MG/L

	Effective Cutoff	Cumulative %	6 less than ind	icated size	
Stage	Diameter	Sample A	Sample B	Sample C	
1	10.00	97.4	98.8	91.7	
2	6.11	86.8	84.3	76.2	
3	3.70	60.5	60.2	52.4	
4	2.22	22.4	25.3	20.2	
5	1.39	5.3	8.4	3.6	
6	0.79	1.3	2.4	1.2	
7	0.50	1.3	2.4	1.2	
					Mean
Mass Median Aerodynamic Diameter		3.1	2.8	3.7	3.2
Geometric	Standard Deviation	1.90	1.93	2.06	1.96
Percentage	$e \leq 4.0$ microns	66	70	54	63

(49)

SLI Study No. 3596.11

APPENDIX D

SLI Personnel Responsibilities

(50)

SLI Study No. 3596.11

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Rusty E. Rush, M.S., LAT, DABT	Director, Neurotoxicity and Transgenics
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Kevin V. Weitzel, A.S.	Primary Technician/Inhalation Team Leader
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

A DERMAL SENSITIZATION STUDY IN GUINEA PIGS WITH SPRAY--BRAVO MODIFIED BUEHLER DESIGN

FINAL REPORT

OPPTS Guidelines

870.2600

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

October 4, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.14

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 43

(2)

SLI Study No. 3596.14

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: ______Date: _____

Title

Signature

(3)

OCT 1 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792) with the following exception:

The dose preparations used during the range-finding study were not analyzed to confirm test article concentration, stability or homogeneity.

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Date

202 Date 28

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

<u>Phase</u>	<u>Date</u>
Protocol Review	04/25/02
Dosing	07/08/02
Data Audit	09/19/02
Draft Report Review	09/19/02
Protocol Amendment Review	09/24/02
Final Report Review	10/04/02

Reports to Study Director and Management 09/19/02, 10/04/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

D.M. Liel

Jenhifer D. McGue Quality Assurance Auditor

Greta In Broau

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 10402

Date 10/4/02

(5)

SLI Study No. 3596.14

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT	4
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	6
6. SUMMARY	7
7. INTRODUCTION	8
8. MATERIALS AND METHODS	8
9. EXPERIMENTAL PROCEDURES	11
10. ANALYSIS OF DATA	13
11. MAINTENANCE OF RAW DATA AND RECORDS	13
12. RESULTS	13
13. CONCLUSION	14
14. REPORT REVIEW	14
15. REFERENCES	15

(6)

SLI Study No. 3596.14

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

	Individual Induction Data (SprayBravo) Individual Challenge Data (SprayBravo)	
<u>Ap</u>	pendices	
A.	Topical Range-Finding Study	. 19
В.	Dermal Grading System	.23
C.	Individual Clinical Observations	.27
D.	Individual Body Weight Data	.29
E.	HCA Historical Control Data	. 32
F.	SLI Personnel Responsibilities	.42

6. SUMMARY

The dermal sensitization potential of Spray--Bravo was evaluated in Hartleyderived albino guinea pigs. Ten male and ten female guinea pigs were topically treated with 100% Spray--Bravo, once per week, for three consecutive weeks. Following a two-week rest period, a challenge was performed whereby the twenty test and ten previously untreated (naive) challenge control guinea pigs were topically treated with 100% Spray--Bravo. Challenge responses in the test animals were compared with those of the challenge control animals.

6.1. Spray--Bravo

Following challenge with 100% Spray-Bravo, dermal reactions in the test and challenge control animals were limited to scores of 0. Group mean dermal scores were noted to be the same in the test animals as compared with the challenge control animals.

6.2. HCA

Using α -Hexylcinnamaldehyde (HCA) as a positive control, Springborn Laboratories, Inc., Spencerville, Ohio, has completed a study during the past six months which provided historical control data for contact sensitization to this agent utilizing the test system described herein (Modified Buehler Design). Following induction at 5% w/v HCA in ethanol and challenge at levels of 2.5% and 1% w/v HCA in acetone, a contact sensitization response was observed, thereby demonstrating the susceptibility of the test system to this sensitizing agent.

6.3. Conclusion

Based on the results of this study, Spray--Bravo is not considered to be a contact sensitizer in guinea pigs. The results of the HCA historical control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers.

7. INTRODUCTION

This study was performed to assess the dermal sensitization potential (delayed contact hypersensitivity) of Spray--Bravo in Hartley-derived albino guinea pigs when administered by multiple topical applications. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2600, Skin Sensitization, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 26, 2002 (GLP initiation date). The in-life phase of the main sensitization study was initiated with test article administration on July 8, 2002 (day 0) and concluded with final scoring on August 7, 2002.

Prior to initiation of the main sensitization study, a topical range-finding study was conducted in guinea pigs to aid in the selection of dosage levels. The in-life phase of the range-finding study was initiated with test article administration on July 1, 2002, and concluded on July 3, 2002. The experimental methods and results of the range-finding study are included in Appendix A.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's	Assigned	Physical	Receipt	Expiration
ID	SLĪ ID	Description	Date	Date
Spray—Bravo ^a	S02.002.3596	Cloudy pale	05/31/02	None
		amber liquid		Provided
Ingredients ^b				
Herbicide: Roundup SL				None
Lot Nos.: 4010/4212				Provided
4397/4272				
4333/4340				
4379/4076				
4397/4333				
Surfactant: Cosmo Flux-411F				None
Lot No.: Unknown				provided
^a Sample pooled at SLI from five dif	ferent mixes of Spr	avBravo (top/m	iddle/bottom).

^aSample pooled at SLI from five different mixes of Spray--Bravo (top/middle/bottom).

^bIngredients used in the five Spray--Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105, 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.8.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was utilized at 100% (induction and challenge). The test article was dispensed fresh on each day of dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hartley-derived albino guinea pigs were received from Hilltop Lab Animals, Inc., Scottdale, PA. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 64-74°F (18-23°C) and 34-72%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Guinea Pig Chow #5026 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 7 weeks of age and weighed 410-483 g on the day prior to Induction I dosing. The female animals were approximately 9 weeks of age and weighed 364-453 g on the day prior to Induction 1 dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Study Design

This study consisted of a topical range-finding group, a test group and a challenge control group [2]. A rechallenge control group was maintained on this study; however, the rechallenge procedure was not required since the challenge results were definitive.

9.2. Sensitization Study

9.2.1. Preliminary Procedures

On the day prior to each dose administration, the guinea pigs had the hair removed with a small animal clipper. Care was taken to avoid abrading the skin.

9.2.2. Dosing

A dose of 0.3 mL of the test article was placed on a 25 mm Hilltop chamber backed by adhesive tape (occlusive patch). The chambers were then applied to the clipped surface as quickly as possible.

Following chamber application, the trunk of the animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chamber and the animal was returned to its cage.

9.2.2.1. Induction

On the day prior to the first induction dose administration (day -1), all test and control animals were weighed and the hair was removed from the left side of the test animals. On the day following clipping (day 0), chambers were applied as follows:

		Induction	Concentration	Test Site	<u>No. o</u>	f Animals
Group	Material	No.	(%)	No.	Male	Female
Test	Spray	1	100 ^a	1	10	10
	Bravo	2	100 ^a	1		
		3	100 ^a	1		

^aPooled test article.

The induction procedure was repeated on study day 7 and on study day 14 so that a total of three consecutive induction exposures were made to the test animals.

9.2.2.2. Challenge

On the day prior to challenge dose administration, the test and challenge control animals were weighed and the hair was removed from the right side of the animals. On the day following clipping (day 28), chambers were applied as follows:

		Concentration	Test Site	<u>No. ot</u>	Animals
Group	Material	(%)	No.	Male	Female
Test	SprayBravo	100 ^a	2	10	10
Challenge Control	SprayBravo	100 ^a	2	5	5

^aPooled test article.

9.2.3. Test Article Removal

Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened in deionized water, followed by dry gauze, to remove test article residue. The animals were then returned to their cages.

9.2.4. Dermal Observations

The test sites were graded for irritation at approximately 24 and 48 hours following chamber application (induction) or chamber removal (challenge) using the Dermal Grading System presented in Appendix B.

9.2.5. Clinical Observations

Any unusual observations and mortality were recorded. The animals were observed for general health/mortality twice daily, once in the morning and once in the afternoon.

9.2.6. Body Weights

Individual body weights were obtained for all sensitization study animals on the day prior to the first induction (day -1) and for the appropriate test and challenge control animals on the day prior to challenge dosing.

9.2.7. Scheduled Euthanasia

All sensitization study animals were euthanized by carbon dioxide inhalation following each animal's final scoring interval. Gross necropsy examinations were not required for these animals.

9.3. Protocol Deviations

On one occasion each, the animal room temperature and relative humidity ranges [64-74°F (17-23°C) and 34-72%] exceeded the preferred ranges [63-73°F (17-23°C) and 30-70%, respectively] during this study. These occurrences were considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

The sensitization potential of the test article was based on the dermal responses observed on the test and control animals at challenge. Generally, dermal scores of ≥ 1 in the test animals with scores of 0 to \pm noted in the controls are considered indicative of sensitization. Dermal scores of 1 in both the test and control animals are generally considered equivocal unless a higher dermal response (\ge grade 2) is noted in the test animals. Group mean dermal scores were calculated for challenge.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Topical Range-Finding Study

Individual Topical Range-Finding Data: Appendix A

The results of the range-finding study indicated that a test article concentration of 100% was considered appropriate for induction and challenge since it was the highest possible concentration which was nonirritating.

12.2. Sensitization Study

Individual Data: Tables 1-2

Following challenge with 100% Spray-Bravo, dermal reactions in the test and challenge control animals were limited to scores of 0. Group mean dermal scores were noted to be the same in the test animals as compared with the challenge control animals.

12.3. Clinical Observations/Body Weights

Individual Clinical Observations: Appendix C Individual Body Weight Data: Appendix D

The sensitization study animals gained weight during the test period and generally appeared in good health.

12.4. Historical Control

HCA Historical Control Data: Appendix E

Using α -Hexylcinnamaldehyde (HCA) as a positive control, Springborn Laboratories, Inc., Spencerville, Ohio, has completed a study during the past six months which provided historical control data for contact sensitization to this agent utilizing the test system described herein (Modified Buehler Design). Following induction at 5% w/v HCA in ethanol and challenge at levels of 2.5% and 1% w/v HCA in acetone, a contact sensitization response was observed, thereby demonstrating the susceptibility of the test system to this sensitizing agent.

13. CONCLUSION

Based on the results of this study, Spray-Bravo is not considered to be a contact sensitizer in guinea pigs. The results of the HCA historical control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers.

Kimberly L¹. Bonnette, M.S., LATG Study Director

Date

14. REPORT REVIEW

Dawn D. Rodabaugh.

Toxicologist

Date 10/4/02

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. E. V. Buehler, Delayed Contact Hypersensitivity in the Guinea Pig, Arch. Dermat., <u>91</u>:171-177, 1965.

	Animal No /	Induction 1 Dermal	1 Dermal Scores	Induction 2 Dermal	2 Dermal Scores	Induction 3 Derm	3 Dermal Scores
Group	Sex	24 Hr	48 Hr	24 Hr	48 Hr	24 Hr	48 Hr
Test	G8744/M	0	0	0	0	0	0
	G8754/M	0	0	0	0	0	0
	G8748/M	0	0	0	0	0	0
	G8749/M	0	0	0	0	0	0
	G8759/M	0	0	0	0	0	0
	G8753/M	0	0	0 ¹⁷	0	0	0
	G8745/M	0	0	0	0	0	0
	G8746/M	0	0	0	0	0	0
	G8747/M	0	0	0	0	0	0
	G8750/M	0	0	0	0	0	0
	G8836/F	0	0	0	0	0	0
	G8837/F	0	0	0	0	0	0
	G8838/F	0	0	0	0	0	0
	G8839/F	0	0	0	0	0	0
	G8840/F	0	0	0	0	0	0
	G8841/F	0	0	0	0	0	0
	G8842/F	0	0	0	0	0	0
	G8843/F	0	0	0	0	0	0
	G8844/F	0	0	0	0	0	0
	00016/1	C	C	c	c	C	c

(16)

(17)

Annex 56-C

541

SLI STUDY NO.: 3596.14 A CLIENT: INL/A, U.S. DEPARTMENT OF STATE	4 PARTMENT OF STATE	TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS E INDIVIDUAL CHALLENGE DATA (SPRAYBRAVO)	PAGE 2
		Dermal Scores	
	Animal No./	100% a	
Group	Sex	24 Hr	48 Hr
Challenge Control	G8751/M	0	0
)	G8752/M	0	0
	G8755/M	0	0
	G8756/M	0	0
	G8757/M	0	0
	G8847/F	0	0
	G8848/F	0	0
	G8803/F	0	0
	G8826/F	0	0
	G8827/F	0	
	Mean	0.0	0.0
Notes: See Appendix B for definition of codes.	r definition of codes.		

Notes. See Appendix b for deminion of ^aPooled test article.

(19)

SLI Study No. 3596.14

APPENDIX A

Topical Range-Finding Study

1. TOPICAL RANGE-FINDING STUDY

This appendix provides the experimental procedures and results of a topical range-finding study in guinea pigs with Spray--Bravo. The procedures for animal husbandry were similar to those described for the main sensitization study animals. The male animals were approximately 8 weeks of age and weighed 407-497 g; the female animals were approximately 10 weeks of age and weighed 479-498 g on the day prior to dosing.

1.1. Method of Test Article Preparation

The test article was utilized at 100% and at 75%, 50% and 25% w/v in deionized for the range-finding study. The test article was prepared and dispensed fresh on the day of dosing. The dosing preparations were stirred continuously during dosing.

1.2. Dosing

On the day prior to dose administration, four topical range-finding guinea pigs were weighed and the hair removed from the right and left side of the animals with a small animal clipper. Care was taken to avoid abrading the skin during clipping procedures.

On the following day, four concentrations of the test article were prepared and each concentration was applied to the clipped area of each topical range-finding animal as indicated below:

		Concentration	Test Site	Amount	
Group	Material	(%)	No.	Applied	Patch Design ^a
Topical	Spray	100 ^b	1	0.3 mL	25 mm Hilltop Chamber
Range- Finding	Bravo	75 ^c	2	0.3 mL	25 mm Hilltop Chamber
		50 ^c	3	0.3 mL	25 mm Hilltop Chamber
		25 [°]	4	0.3 mL	25 mm Hilltop Chamber

^aOcclusive patch.

^bPooled test article.

^cThe vehicle was deionized water.

The chambers were applied to the clipped surface as quickly as possible. The trunk of the animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chambers and the animal was returned to its cage.

Approximately six hours after chamber application, the binding materials were removed. The test sites were then wiped with gauze moistened in deionized water, followed by dry gauze, to remove test article residue and the animals returned to their cages.

1.3. Dermal Observations

The test sites of the topical range-finding animals were graded for irritation at approximately 24 and 48 hours following chamber application using the Dermal Grading System in Appendix B.

1.4. Clinical Observations

Any unusual observations and mortality were recorded. The topical range-finding animals were observed for general health/mortality twice daily, once in the morning and once in the afternoon.

1.5. Body Weights

Individual body weights were obtained for the topical range-finding animals on the day prior to dosing.

1.6. Scheduled Euthanasia

Following the 48-hour scoring interval, all topical range-finding animals were euthanized by carbon dioxide inhalation. Gross necropsy examinations were not required for these animals.

1.7. Results

The results of the range-finding study indicated that a test article concentration of 100% was considered appropriate for induction and challenge since it was the highest possible concentration which was nonirritating.

SLI STUDY NO.: 3596.14 CLIENT: INL/A, U.S. DEP/	SLI STUDY NO.: 3596.14 CLIENT: INL/A, U.S. DEPARTMENT OF STATE	A DERMA	A DERMAL SENSITIZATION STUDY IN GUINEA PIGS TOPICAL RANGE-FINDING DATA (SPRAYBRAVO) Range-Finding Dermal	L SENSITIZATION STUDY IN GUII TOPICAL RANGE-FINDING DATA (SPRAYBRAVO) Range-Findii Range-Findii	UDY IN GUINEA PIGS DING DATA VO) Range-Finding Dermal Scores	EA PIGS	ores or a.p		PAGE 1
Bod	Animai No./Sex Body Weight (g)		10% 48 Hr	73 24 Hr	r 48 Hr	24 Hr	50% Ir 48 Hr	23 24 Hr	6 48 Hr
0	G8349/M 407	0	0	0	0	0	0	0	0
0	G8353/M 497	0	0	0	0	0	0	0	0
U	38506/F 479	0	0	0	0	0	0	0	0
0	38507/F 498	0	0	0	0	0	0	0	0
Pooled test article. The vehicle used was deionized Vote: See Appendix B for definit	^a Pooled test article. ^b The vehicle used was deionized water. Note: See Appendix B for definition of codes.								

(22)

(23)

SLI Study No. 3596.14

APPENDIX B

Dermal Grading System

DERMAL GRADING SYSTEM

ERYTHEMA AND EDE	EMA OBSERVATIONS							
OBSERVATION	DEFINITION	CODE						
Erythema – Grade 0	No reaction	0						
Erythema – Grade ±	Slight patchy erythema	±						
Erythema – Grade 1	Slight, but confluent or moderate patchy erythema	1						
Erythema – Grade 2	Moderate, confluent erythema	2						
Erythema – Grade 3	Severe erythema with or without edema	3						
Maximized Grade 3 Notable dermal lesions								
Edema – Grade 1	Very slight adams (barely paraentible)	ED-1						
Edenia – Grade T	Very slight edema (barely perceptible)	ED-1						
	Slight edema (edges of area well defined by definite							
Edema – Grade 2	raising)	ED-2						
Edema – Grade 2 Edema – Grade 3		ED-2 ED-3						
	raising)							

was present at the test site. If notable dermal lesion(s) (> grade 1) were present, then the "Maximized Grade 3" was assigned to the test site in place of the erythema score and the type of the notable dermal lesion(s) was noted (e.g., $M-3^{ES-2}$).

(25)

SLI Study No. 3596.14

DERMAL GRADING SYSTEM

NOTABLE DERMAL L	ESIONS	
OBSERVATION	CODE	DEFINITION
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.
Eschar – Grade 2	ES-2	> 10% < 25% of test site.
Eschar – Grade 3	ES-3	> 25% < 50% of test site.
Eschar – Grade 4	ES-4	> 50% of test site.
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.
Blanching – Grade 4	BLA-4	> 50% of test site.
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.
Ulceration – Grade 2	U-2	> 10% < 25% of test site.
Ulceration – Grade 3	U-3	> 25% < 50% of test site.
Ulceration – Grade 4	U-4	> 50% of test site.
	NEC-1	Focal and/or pinpoint areas up to 10% of test site (note
Necrosis – Grade 1	(color)	color of necrosis).
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (Note color of necrosis).
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (Note color of necrosis).
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (Note color of necrosis).

DERMAL GRADING SYSTEM

ADDITIONAL DERMAL F	FINDINGS	
OBSERVATION	DEFINITION	CODE
Desquamation	Characterized by scaling or flaking of dermal tissue or without denuded areas.	DES
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).	-
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3
Superficial Lightening - Grade 4	> 50% of test site	SL-4
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which do not interfere with the scoring of the test site.	IT

(27)

SLI Study No. 3596.14

APPENDIX C

Individual Clinical Observations

PAGE 1 FIONS				
SLI STUDY NO.: 3596.14 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS CLIENT: INL/A, U.S. DEPARTMENT OF STATE INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)	Clinical Observation	Hill appearance. Days o-r	Thin Appearance: Days 6-7	
3596.14 A DE .S. DEPARTMENT OF STATE	Animal No./Sex	L/00000	G8837F	
SLI STUDY NO.: ; CLIENT: INL/A, U.	Group Toot	ICOL		

(29)

SLI Study No. 3596.14

APPENDIX D

Individual Body Weight Data

PAGE 1																					
	Day 27	536	711	653	672	691	672	689	657	716	579	518	526	511	505	594	521	628	513	571	632
a dermal sensitization study in guinea pigs Ate individual body weight data	Day -1	410	483	454	453	479	451	468	456	483	413	412	404	382	382	416	367	421	367	391	453
SLI STUDY NO.: 3596.14 A DERM CLIENT: INL/A, U.S. DEPARTMENT OF STATE	Animal No./Sex	G8744/M	G8754/M	G8748/M	G8749/M	G8759/M	G8753/M	G8745/M	G8746/M	G8747/M	G8750/M	G8836/F	G8837/F	G8838/F	G8839/F	G8840/F	G8841/F	G8842/F	G8843/F	G8844/F	G8845/F
SLI STUDY NO.: 356 CLIENT: INL/A, U.S.	Group	Test																			

(30)

PAGE 2

SLI STUDY NO.: 3596.14 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS CLIENT: INL/A, U.S. DEPARTMENT OF STATE INDIVIDUAL BODY WEIGHT DATA

Day 27	629	684	606	656	692	540	532	526	512	507	I		I	I	I	I	I	I	I	1
Day -1	427	458	433	453	457	381	407	376	384	370	446	457	444	463	421	438	373	364	369	370
Animal No./Sex	G8751/M	G8752/M	G8755/M	G8756/M	G8757/M	G8847/F	G8848/F	G8803/F	G8826/F	G8827/F	G8760/M	G8761/M	G8762/M	G8763/M	G8758/M	G8828/F	G8829/F	G8831/F	G8832/F	G8833/F
Group	Challenge	Control									Rechallenge	Control ^a								

(31)

(32)

SLI Study No. 3596.14

APPENDIX E

HCA Historical Control Data

(33)

SLI Study No. 3596.14

SPRINGBORN LABORATORIES, INC. MODIFIED BUEHLER HISTORICAL CONTROL DATA USING α-HEXYLCINNAMALDEHYDE (SLI Study No. 999.171)

1. OBJECTIVE

This study was performed to assess the dermal sensitization potential of α -Hexylcinnamaldehyde (HCA) when administered by multiple topical applications. This study may be used to provide information on the ability of the test system to detect potential contact sensitizers and to update the historical positive control of the testing facility. The protocol was signed by the Study Director on February 6, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on March 13, 2002, and concluded with final scoring on April 12, 2002.

2. TEST ARTICLE

The test article was received from the manufacturer, TCI America, and identified as follows:

Supplier's ID	Assigned SLI ID	Physical Description	Receipt Date	SLI Assigned Expiration Date
HCA Lot No.: GF01	S01.008.N	Clear yellow liquid	08/21/01	08/21/03

The bulk compound was stored desiccated, protected from light, at room temperature. The manufacturer provided a Certificate of Analysis for the test article which is presented as Attachment 1 of this Appendix.

The HCA was mixed with ethanol or acetone to produce the appropriate concentrations for dose administration. For the sensitization study, the test article concentrations utilized were 5% w/v in ethanol (induction) and 1% and 2.5% w/v in acetone (challenge).

3. EXPERIMENTAL PROCEDURES [1]

Young adult Hartley-derived albino guinea pigs were received on March 7, 2002, from Hilltop Lab Animals, Inc., Scottdale, PA. The guinea pigs were uniquely identified by ear tag, individually housed in suspended stainless steel cages and received Purina Certified Guinea Pig Chow #5026 and water purified by reverse osmosis ad libitum. The animals were acclimated for a minimum of 5 days prior to experimental initiation. The male guinea pigs were approximately 7 weeks of age and weighed 370-463 g; the female guinea pigs were approximately 8 weeks of age and weighed 336-396 g on the day prior to Induction I dosing.

On the day prior to the first induction dose administration (day -1), the hair was removed from the left side of the twenty test animals. On the following day, 0.3 mL of 5% w/v HCA in ethanol was placed on a Hilltop chamber and applied to the clipped area of each animals back. The trunk of each animal was wrapped with elastic wrap which was secured with adhesive tape to prevent removal of the chamber. Approximately six hours after chamber application, the binding materials were removed. The test sites were wiped with gauze moistened with deionized water, followed by dry gauze, to remove test article residue. The test sites were graded for irritation at approximately 24 and 48 hours following chamber application using the Dermal Grading System. The induction procedure was repeated on study day 7 and on study day 14 so that a total of three induction exposures were made to the animals.

On the day prior to challenge dose administration, the hair was removed from the right side of the twenty test and ten challenge control animals. On the following day (day 28), 0.3 mL of 1% and 2.5% w/v HCA in acetone was placed on a 25 mm Hilltop chamber and applied to the clipped area of each animales back. Wrapping, unwrapping and rinsing procedures were the same as those utilized for the induction phase. The test sites were graded for irritation at approximately 24 and 48 hours following chamber removal.

Any unusual observations and/or mortality were recorded. Body weights were recorded for the test, challenge control and rechallenge control animals on the day prior to first induction (day -1) and for the test and challenge control animals on the day prior to challenge dosing. All sensitization study animals were euthanized by carbon dioxide inhalation following each animal's final scoring interval. Gross necropsy examinations were not required for these animals.

Note: The temperature and relative humidity of the animal room [64-75°F (18-24°C)] exceeded the preferred ranges [63-73°F (17-23°C) and 30-70%] during

this study. These occurrences were considered to have had no adverse effect on the outcome of this study.

4. RESULTS

Individual Data: Tables 1-2

Following challenge with 2.5% w/v HCA in acetone, dermal scores of 1 were noted in 8/20 test animals at the 24-hour scoring interval. At the 48-hour scoring interval, dermal scores of 1 were noted in 4/20 test animals. Dermal reactions in the remaining test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be higher in the test animals as compared with the challenge control animals.

Following challenge with 1% w/v HCA in acetone, dermal scores of 1 were noted in 5/20 test animals at the 24-hour scoring interval. At the 48-hour scoring interval, dermal scores of 1 were noted in 2/20 test animals. Dermal reactions in the remaining test and challenge control animals were limited to scores of 0 to \pm . Group mean dermal scores were noted to be higher in the test animals as compared with the challenge control animals.

5. CONCLUSION

The results of this α -Hexylcinnamaldehyde positive control study demonstrated that a valid test was performed and indicated that the test design would detect potential contact sensitizers. Based on the results of this study, α -Hexylcinnamaldehyde is considered to be a contact sensitizer in guinea pigs.

6. REFERENCE

1. E.V. Buehler, <u>Occlusive Patch Method for Skin Sensitization in Guinea Pigs:</u> <u>The Buehler Method</u>, Fd. Chem. Toxic., Vol. 32, No. 2, pp. 97-101, 1994.

SLI HISTORICAL CONTROL STUDY NO.: 999.171	ONTROL	A DERMAL IND (α-ι	TABLE 1 AL SENSITIZATION STUDY IN INDIVIDUAL INDUCTION DATA (α-HEXYLCINNAMALDEHYDE)	TABLE 1 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL INDUCTION DATA (α-HEXYLCINNAMALDEHYDE)	PAGE 1
		Induction 1 Dermal Scores	mal Scores	Induction 2 Dermal Scores	rmal Scores
	Animal No./	2% _a		5% ^a	
Group	Sex	24 Hr			
Test	G5787/M	1 ED-1, BLA-1, DES	+BLA-1, DES,	$2^{ m ED-2,\ BLA-1,\ SL-1,\ DES}$	2 ^{ED-2, BLA-1, DES}
	G5788/M	1 ^{ED-1, DES}	- HDES	2^{ED-1} , DES	$2^{\text{ED-1},\text{ DES}}$
	G5789/M	±ed-1, des, it	+ DES	2 ^{ED-1,} BLA-1, DES	2 ^{ED-1,} BLA-1, DES
	G5790/M	2 ^{ED-1, SL-4}	1 ^{ED-1, DES}	M-3 ^{ED-2, BLA-2, DES}	M-3 ^{ED-1,} BLA-2, NEC-1 (BK), DES
	G5791/M	± ^{ED-1,} BLA-1, DES	± ^{BLA-1, DES}	2 ^{ED-2,} BLA-1, DES	2 ^{ED-1,} BLA-1, DES
	G5792/M	1 ^{ED-1, BLA-1, DES}	± ^{BLA-1, DES}	M-3 ^{ED-2, NEC -2 (BK), BLA-1, DES}	M-3 ^{ED-1} , BLA-1, ES-2, DES
	G5793/M	1 ^{ED-1, BLA-1, DES}	$\pm^{\text{ED-1},\text{ BLA-1},\text{ DES}}$	M-3 ^{ED-2, BLA-2, SL-1, DES}	M-3 ^{ED-1, BLA-2, DES}
	G5794/M	1 ^{ED-1, DES}	± ^{DES}	2 ^{ED-2, ES-1, DES}	2 ^{ED-1,} ES-1, DES
	G5795/M	1 ^{ED-1, BLA-1, DES}	\pm ED-1, BLA-1, DES	2 ^{ED-2,} BLA-1, SL-3, DES	$2^{ ext{ED-1}, ext{ BLA-1}, ext{ DES}}$
	G5796/M	2 ^{ED-1,} BLA-1, DES	1 ^{BLA-1, DES}	2 ^{ED-2,} BLA-1, DES	1 ^{ED-1,} BLA-1, DES
	G5894/F	± ^{ED-1, DES, IT}	± ^{DES}	2 ^{ED-2, DES}	1 ^{ED-1} , DES
	G5895/F	1 ^{ED-1, DES, IT}	± ^{DES}	2 ^{ED-2,} BLA-1, SL-1, DES	1 ^{ED-1, BLA-1, DES}
	G5896/F	±DES, IT	± ^{DES}	2 ^{ED-2,} BLA-1, ES-1, DES	M-3 ^{ED-2, ES-2, DES}
	G5897/F	1 ^{ED-1, DES, IT}	± ^{DES}	1 ^{ED-1, DES, IT}	± ^{DES}
	G5898/F	± ^{DES, IT}	±DES	±DES, IT	±des
	G5899/F	±DES, IT	0 ^{DES}	2 ^{ED-2,} BLA-1, DES	2 ^{ED-1,} BLA-1, DES
	G5900/F	1 ^{ED-1, BLA-1, DES}	$\pm^{ED-1,BLA-1,DES}$	2 ^{ED-2,} BLA-1, DES	2 ^{ED-2,} BLA-1, DES
	G5901/F	1 ^{ED-1, DES, IT}	± ^{DES}	$2^{ ext{ED-2}, ext{ SL-4}, ext{ DES, IT}}$	$2^{ ext{ED-2}, ext{ BLA-1}, ext{ DES}}$
	G5902/F	± ^{DES}	± ^{DES}	2 ^{ED-2,} SL-1, DES	2 ^{ED-1} , SL-1, DES
	G5903/F	0 ^{1T}	0	2 ^{ED-2, DES}	fed-1, DES

(36)

^aThe vehicle was ethanol. Notes: See Appendix B for definition of codes. BK = black.

STUDY NO.: 996	STUDY NO.: 999.171	individual induction data (α-HEXYLCINNAMALDEHYDE)	
		Induction 3 Dermal Scores	
	Animal No./	5% ^a	
Group	Sex	24 Hr	48 Hr
Test	G5787/M	2 ^{ED-2, DES}	2 ^{ED-1}
	G5788/M	$\overline{2}^{\text{ED-2},\text{ BLA-1}}$	Z ^{ED -2,} BLA-1
	G5789/M	2 ^{ED-2}	2 ^{ED-1, SL-1}
	G5790/M	2 ^{ED-2} , SL4, DES	2 ^{ED-1, SL-4}
	G5791/M	2 ^{ED-2, DES}	2 ^{ED-1}
	G5792/M	2 ^{ED-2} , SL-1, DES	2 ^{ED-1, SL-1}
	G5793/M	2 ^{ED-2, DES}	2 ^{ED-1} , DES
	G5794/M	2 ^{ED-2} , SL-2, DES	2 ^{ED-2,} SL-2, DES
	G5795/M	2 ^{ED-2} , SL-2, DES	2 ^{ED-1,} BLA-1, SL-2
	G5796/M	2 ^{ED-2} , SL-2, DES	2 ^{ED-1, BLA-1, SL-1}
	G5894/F	1 ^{ED-1, DES}	1 ^{ED-1}
	G5895/F	1 ^{ED-1, DES}	1 ^{ED-1}
	G5896/F	2 ^{ED-2,} SL-1, DES, IT	2 ^{ED-2, SL-1}
	G5897/F	1 ^{ED-1, DES}	1 ^{ED-1}
	G5898/F	\pm ED-1, DES	±ED-1
	G5899/F	2 ^{ED-2,} SL4, DES	2 ^{ED-2, SL-4}
	G5900/F	2 ^{ED-2} , SL-2, DES	2 ^{ED-1,} SL-2
	G5901/F	2 ^{ED-2} , SL-4, DES	2 ^{ED-1} , SL-4
	G5902/F	2 ^{ED-2} , SL-4, DES	2 ^{ED-1, SL-4}
	G5903/F	1 ED-1, BLA-1, DES	1ED-1, BLA-1, SL-1

TABLE 1

PAGE 1

TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS

SLI HISTORICAL CONTROL

(38)

STUDY NO.: 999.171		INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)	ENGE DATA ALDEHYDE)		
			Dermal	Scores	
	Animal No./	2.5% ^a		1% ^a	
Group	Sex	24 Hr	48 Hr	24 Hr	48 Hr
Test	G5787/M	11	+1	1	⊢ +1
	G5788/M	+1	+1	+1	+1
	G5789/M	+1	0	+1	0
	G5790/M	1 ^{ED-1}	-	-	~
	G5791/M	+	-	⊢ _+	⊑_+
	G5792/M	+1	0	+1	0
	G5793/M	+1	+1	+1	+1
	G5794/M	-	-	-	+1
	G5795/M	4	+1	+1	0
	G5796/M	⊨ _∓	+1	+1	+1
	G5894/F	+1	0	+1	0
	G5895/F	4	+1	1⊤	+1
	G5896/F	4	+1	+1	+1
	G5897/F	+1	0	⊑_+	0
	G5898/F	+1	+1	0	0
	G5899/F	4	-		1⊤
	G5900/F	Ľ_+	0	⊢ +	0
	G5901/F	+1	0	+1	0
	G5902/F	+1	+1	+1	0
	G5903/F	+1	+1	+1	0
	Mean	0.7	0.5	0.6	0.3
^a The vehicle was acetone. Notes: For the purpose of calculation, $\pm = 0.5$.		See Appendix B for definition of codes.	n of codes.		

TABLE 2	A DERMAL SENSITIZATION STUDY IN GL	INDIVIDITAL CHALLENGE DATA
	SLI HISTORICAL CONTROL	STLIDV NO · 000 171

SLI Study N	۱o.	3	59	6.′	14										(3
PAGE 2			48 Hr	0	0	⊑_+I	0	01	0	0	0	0	0	0.1	
ŝ	res	1% ^a	24 Hr	0	0	<u>+</u>	0	0	0	0	0	0	00	0.1	
: 2 DN STUDY IN GUINEA PIC LENGE DATA MALDEHYDE)	Dermal Scores	a	48 Hr	0	0	0	0	0	0 ^{IT}	0	0	0	0	0.0	on of codes.
TABLE 2 A DERMAL SENSITIZATION STUDY IN GUINEA PIGS INDIVIDUAL CHALLENGE DATA (α-HEXYLCINNAMALDEHYDE)		2.5% ^a	24 Hr	0	0	0	0	0	0	0 ^{1T}	0 ^{1T}	0	00	0.0	= 0.5. See Appendix B for definition of codes.
_		Animal No./	Sex	G5797/M	G5798/M	G5799/M	G5800/M	G5801/M	G5904/F	G5905/F	G5906/F	G5907/F	G5908/F	Mean	
SLI HISTORICAL CONTROL STUDY NO.: 999.171			Group	Challenge											^a The vehicle was acetone. Notes: For the purpose of calculation, \pm

(39)

(40)

SLI Study No. 3596.14

ATTACHMENT 1

Certificate of Analysis (Provided by the Manufacturer)

(41)

CERTIFICATE OF ANALYSIS

H0685 Lot# GF01 CAS# 101-86-0

ALPHA-N-HEXYLCINNAMALDEHYDE

Appearance:	Yellow clear liquid
SG(20/20):	0.96
n(20/D):	1.55
Assay(GC):	92%

9211N. Harborgate St. Portland, OR 97203 Phone: (503)283-1681 (800)423-8616 Fax: (503)283-1987

(42)

SLI Study No. 3596.14

APPENDIX F

SLI Personnel Responsibilities

(43)

SLI Study No. 3596.14

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Primary Technician/Supervisor of Acute Toxicology
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

A PRIMARY EYE IRRITATION STUDY IN RABBITS WITH SPRAY--BRAVO

FINAL REPORT

OPPTS Guideline

870.2400

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 18, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.12

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 27

SLI Study No. 3596.12 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent: ______Date: _____

Title

Signature

(3)

SEP 0 5 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L! Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 30 Aug 02

SLI Study No. 3596.12 (4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review Dose Preparation Data Audit Draft Report Review Protocol Amendment Review Final Report Review	04/25/02 06/28/02 08/26/02 08/26/02 08/26/02 09/18/02

Reports to Study Director and Management 08/26/02, 9/18/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

UNNIGH D. MCDILO

Jenhifer D. McGue Quality Assurance Auditor

Date 9/18/02

Anita M. Bosau, RQAP-GLP

Ánita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date <u>9/18/02</u>

SLI Study No. 3596.12 (5)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS
2. COMPLIANCE STATEMENT
3. QUALITY ASSURANCE STATEMENT 4
4. TABLE OF CONTENTS
5. LIST OF TABLES AND APPENDICES
6. SUMMARY7
7. INTRODUCTION
8. MATERIALS AND METHODS 8
9. EXPERIMENTAL PROCEDURES 11
10. ANALYSIS OF DATA 12
11. MAINTENANCE OF RAW DATA AND RECORDS
12. RESULTS
13. CONCLUSION 13
14. REPORT REVIEW 13
15. REFERENCES

SLI Study No. 3596.12	(6)
-----------------------	-----

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

1.	Individual Ocular Irritation Scores (No Rinse Group)	15
<u>Ap</u>	pendices	
A.	Ocular Grading System	17
Β.	Ocular Evaluation Criteria (Kay and Calandra)	22
C.	Individual Clinical Observations	24
D.	SLI Personnel Responsibilities	26

SLI Study No. 3596.12 (7)

6. SUMMARY

The potential irritant and/or corrosive effects of Spray--Bravo were evaluated on the eyes of New Zealand White rabbits. Each of three rabbits received a 0.1 mL dose of the test article in the conjunctival sac of the right eye. The contralateral eye of each animal remained untreated and served as a control. Test and control eyes were examined for signs of irritation for up to 7 days following dosing.

Exposure to the test article produced iritis in 2/3 test eyes at the 1-hour scoring interval which resolved completely in all test eyes by the 24-hour scoring interval. Conjunctivitis (redness, swelling and discharge) was noted in 3/3 test eyes at the 1-hour scoring interval. The conjunctival irritation resolved completely in all test eyes by study day 7.

Based on the Kay and Calandra Evaluation, Spray--Bravo is considered to be a mild irritant to the ocular tissue of the rabbit.

(8)

7. INTRODUCTION

This study was performed to assess the irritant and/or corrosive effects of Spray--Bravo in New Zealand White rabbits when administered by a single ocular dose. This study was intended to provide information on the potential health hazards of the test article with respect to ocular exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2400, Acute Eye Irritation, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 26, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 28, 2002 (day 0), and concluded with final scoring on July 5, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Bravo ^a	S02.002.3596	Cloudy pale amber liquid	05/31/02	None Provided
Ingredients ^b Herbicide: Roundup-SL Lot No.: 4010/4212				None Provided
Surfactant: Cosmo Flux-411F Lot No.: Unknown				None Provided

^aSample pooled at SLI from five different mixes of Spray--Bravo (top/middle/bottom). ^bIngredients used in the five Spray--Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.8.

SLI Study No. 3596.12 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor at the completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, New Zealand White rabbits were received from Myrtle's Rabbitry, Thompson Station, TN. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 69-72°F (21-22°C) and 46-61%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

(10)

8.5.3. Food

PMI Certified Rabbit Chow #5322 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. The female was nulliparous and nonpregnant. The male animals were approximately 16 weeks of age and weighed 3.4-3.5 kg prior to dosing. The female animal was approximately 14 weeks of age and weighed 3.3 kg prior to dosing.

SLI Study No. 3596.12 (11)

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Examination

On day 0 prior to dosing, both eyes of each animal provisionally selected for test use were examined macroscopically for ocular irritation with the aid of an auxiliary light source. In addition, the corneal surface was examined using fluorescein sodium dye. One drop of a fluorescein/physiological saline mixture was gently dropped onto the superior sclera of each eye. Following an approximate 15 second exposure, the eyes were thoroughly rinsed with physiological saline. The corneal surface was then examined for dye retention under a long-wave UV light source. Animals exhibiting ocular irritation, preexisting corneal injury or fluorescein dye retention were not used on study. All animals found to be acceptable for test use were returned to their cages until dosing.

9.2. Dosing

A minimum of one hour after preliminary ocular examination, the test article was instilled as follows:

	Concentration	_	No. of	Animals
Group	(%)	Amount Instilled	Male	Female
No Rinse	100 ^a	0.1 mL	2	1
an i i i i				

^aPooled test article.

The test article was instilled into the conjunctival sac of the right eye of each animal after gently pulling the lower lid away from the eye. Following instillation, the eyelids were gently held together for approximately one second in order to limit test article loss and the animal was returned to its cage. The contralateral eye remained untreated to serve as a control.

9.3. Ocular Observations

The eyes were macroscopically examined with the aid of an auxiliary light source for signs of irritation at 1, 24, 48 and 72 hours and up to 7 days after dosing according to the Ocular Grading System presented in Appendix A which is based on Draize [2]. Following macroscopic observations at the 24-hour scoring interval, the fluorescein examination procedure was repeated on all test and control eyes and any residual test article was gently rinsed from the eye at this time (if possible) using physiological saline. If any fluorescein findings were

SLI Study No. 3596.12 (12)

noted at 24 hours, a fluorescein exam was conducted on the affected eyes at each subsequent interval until a negative response was obtained and/or until all corneal opacity had cleared, or as directed by the Study Director.

9.4. Clinical Observations

Any unusual observations and/or mortality were recorded. General health/mortality checks were performed twice daily (in the morning and in the afternoon).

9.5. Body Weights

Individual body weights were obtained for each animal prior to dosing on day 0.

9.6. Scheduled Euthanasia

Each animal was euthanized by an intravenous injection of sodium pentobarbital following its final observation interval. Gross necropsy examinations were not required for these animals.

9.7. Protocol Deviations

No protocol deviations occurred during this study.

10. ANALYSIS OF DATA

For each group, the ocular irritation score for each parameter (i.e., corneal opacity x area, iritis and conjunctival redness + swelling + discharge) was multiplied by the appropriate factor (i.e., corneal injury x 5, iritis x 5, conjunctivitis x 2) and the totals added for each animal/interval. The group mean irritation score was then calculated for each scoring interval based on the number of animals initially dosed in each group. The calculated group mean ocular irritation scores for each interval were used to classify the test article according to the Ocular Evaluation Criteria [3] presented in Appendix B.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Ocular/Clincial Observations

Individual Data: Table 1 Individual Clinical Observations: Appendix C

Exposure to the test article produced iritis in 2/3 test eyes at the 1-hour scoring interval which resolved completely in all test eyes by the 24-hour scoring interval. Conjunctivitis (redness, swelling and discharge) was noted in 3/3 test eyes at the 1-hour scoring interval. The conjunctival irritation resolved completely in all test eyes by study day 7.

A mechanical abrasion was observed in 1/3 control eyes during the fluorescein examination, but was not considered to be significant since it was not observed macroscopically and was transient in nature. No corneal opacity, iritis or conjunctivitis was observed in the control eyes.

Soft stools was observed in one animal on study day 1 only and was therefore not considered to be significant.

13. CONCLUSION

Based on the Kay and Calandra Evaluation, Spray--Bravo is considered to be a mild irritant to the ocular tissue of the rabbit.

Kimberly L. Bonnette, M.S., LATG Study Director

Date <u>91802</u>

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S Associate Toxicologist

Date 18/1

SLI Study No. 3596.12 (14)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.
- 3. Kay, J.H. and Calandra, J.C., "Interpretation of Eye Irritation Tests", Journal of the Society of Cosmetic Chemists, 13, 281-289, 1962.

			Cornea	ee Ee		in				(NO RINSE GROUP) Continuctivae		Test	Test Fve*	Cont	Control Eve*
Animal No./Sex Body Weight (kg)	Scoring Interval	0	۲	OxAx5	_	lx5	Ľ	S		(R+S+D)2	Total	Fluorescein Examination	Secondary Ocular Findings	Fluorescein Examination	Secondary Ocular Findings
R2257/F	1 Hour	0	0	0	-	5	2	2	-	10	15				
3.327	24 Hours	0	0	0	0	0	7	7	-	10	10	Ξ		M	
	48 Hours	0	0	0	0	0	.	-	0	4	4			Ξ	
	72 Hours	0	0	0	0	0	-	0	0	2	N				
	7 Days	0	0	0	0	0	0	0	0	0	0				
R2167/M	1 Hour	0	0	0	0	0		7	-	8	ø				
3.436	24 Hours	0	0	0	0	0	7	2	~	10	10	Ξ		Ξ	
	48 Hours	0	0	0	0	0	2	-	~	8	8				
	72 Hours	0	0	0	0	0	-	0	0	2	2				
	7 Days	0	0	0	0	0	0	0	0	0	0				
R2163/M	1 Hour	0	0	0	-	5	2	2	2	12	17				
3.451	24 Hours	0	0	0	0	0	7	7	7	12	12	Ξ		Ξ	
	48 Hours	0	0	0	0	0	7	-	-	8	80				
	72 Hours	0	0	0	0	0	-	-	0	4	4				
	7 Davs	c	С	0	0	0	0	0	0	0	0				

Annex 56-C

(15)

TABLE 1 SLI STUDY NO.: 3596.12 A PRIMARY EYE IRRITATION STUDY IN RABBITS CLIENT: INL/A, US DEPARTMENT OF STATE INDIVIDUAL OCULAR IRRITATION SCORES (SPRAY—BRAVO) (NO RINSE GROUP)

S
Ð
5
2
2
<i>o</i>
ສີ
⊒
0
\cap
-
g
(D)
ž
~

13.33	10.67	6.67	2.67	0.00	
·	·	·	·	ī	
1 Hour	24 Hours	48 Hours	72 Hours	7 Days	

Mild Irritant

583

PAGE 2

Annex 56-C

SLI Study No. 3596.12

(17)

APPENDIX A

Ocular Grading System

(18)

OCULAR GRADING SYSTEM

(O) CORNEAL OPACITY—DEGREE OF DENSITY (AREA MOST DENSE TAKEN FOR READING)	
OBSERVATION	CODE
No ulceration or opacity	0
Scattered or diffuse areas of opacity (other than slight dulling of normal luster), details of iris clearly visible	1*
Easily discernible translucent area, details of iris slightly obscured	2*
Nacreous (opalescent) area, no details of iris visible, size of pupil barely discernible	3*
Opaque cornea, iris not discernible through opacity	4*

(A) AREA OF CORNEA INVOLVED (TOTAL AREA EXHIBITING ANY OPACITY, REGARDLESS OF DEGREE)	
OBSERVATION	CODE
No ulceration or opacity	0
One quarter (or less) but not zero	1
Greater than one quarter, but less than half	2
Greater than half, but less than three quarters	3
Greater than three quarters, up to whole area	4

Cornea Score = O x A x 5

Total Maximum = 80

(I) IRITIS	
OBSERVATION	CODE
Normal	0
Markedly deepened rugae (folds above normal), congestion, swelling, moderate circumcorneal hyperemia or injection, any or all of these or combination of any thereof, iris is still reacting to light (sluggish reaction is positive)	1*
No reaction to light, hemorrhage, gross destruction (any or all of these)	2*

Iris Score = I x 5

Total Maximum = 10

*Starred figures indicate positive effect.

SLI Study No. 3596.12 (19)

OCULAR GRADING SYSTEM

(R) CONJUNCTIVAL REDNESS (REFERS TO PALPEBRAL AND BULBAR CONJUNCTIVAE EXCLUDING CORNEA AND IF	RIS)
OBSERVATION	CODE
Blood vessels normal	0
Some blood vessels definitely hyperemic (injected) above normal (slight erythema)	1
Diffuse, crimson color, individual vessels not easily discernible (moderate erythema)	2*
Diffuse beefy red (marked erythema)	3*

(S) CONJUNCTIVAL SWELLING (LIDS AND/OR NICTITATING MEMBRANE)	
OBSERVATION	CODE
No swelling	0
Any swelling above normal (includes nictitating membrane, slightly swollen)	1
Obvious swelling with partial eversion of lids	2*
Swelling with lids about half closed	3*
Swelling with lids more than half closed	4*

(D) CONJUNCTIVAL DISCHARGE	
OBSERVATION	CODE
No discharge	0
Any amount different from normal (does not include small amounts observed in inner canthus of normal animals)	1
Discharge with moistening of the lids and hairs just adjacent to lids	2
Discharge with moistening of the lids and hairs and considerable area around the eye	3

Conjunctival Score = (R + S + D) x 2

Total Maximum = 20

*Starred figures indicate positive effect.

(20)

OCULAR GRADING SYSTEM

CORNEAL NEOVASCULARIZATION			
OBSERVATION	CODE	DEFINITION	
Neovascularization – Very Slight	VAS-1	Total area of vascularized corneal tissue is < 10% of corneal surface	
Neovascularization – Mild	VAS-2	Total area of vascularized corneal tissue is > 10% but < 25% of corneal surface	
Neovascularization – Moderate	VAS-3	Total area of vascularized corneal tissue is > 25% but < 50% of corneal surface	
Neovascularization – Severe	VAS-4	Total area of vascularized corneal tissue is > 50% of corneal surface	

SECONDARY OCULAR FINDINGS		
OBSERVATION	CODE	DEFINITION
Sloughing of the corneal epithelium	SCE	Corneal epithelial tissue is observed to be peeling off the corneal surface.
Corneal bulging	СВ	The entire corneal surface appears to be protruding outward further than normal.
Slight dulling of normal luster of the cornea	SDL	The normal shiny surface of the cornea has a slightly dulled appearance.
Raised area on the corneal surface	RAC	A defined area on the corneal surface that is raised above the rest of the cornea. This area is generally associated with neovascularization and has an off-white to yellow color.
Corneal edema	CE	The cornea has a swollen appearance.
Test article present in eye	TAE	Apparent residual test article is observed on the eye or in the conjunctival sac/inner canthus.
Observation confirmed by slit lamp	OCS	A slit lamp examination was performed to confirm the initial observation.
Corneal mineralization	СМ	Small white or off-white crystals that are observed in the corneal tissue.

SLI Study No. 3596.12 (21)

OCULAR GRADING SYSTEM

FLUORESCEIN EXAMINATION OF CORNEA	
OBSERVATION	CODE
Fluorescein Dye Retention Fluorescein dye retention associated with the area of corneal opacity Fluorescein dye retention is not associated with any other finding	FAO FNF
Negative Results No fluorescein retention is observed	(-)
Secondary Ocular Findings Superficial mechanical abrasion to the cornea observed during the fluorescein examination period Fine stippling on the cornea observed during the fluorescein examination procedure	MI ST

POST-DOSE CLINICAL OBSERVATIONS	
OBSERVATION	CODE
Animal vocalized following dosing	VOC
Animal excessively pawed test eye following dosing	PAW
Animal exhibited excessive hyperactivity following dosing	HYP
Animal exhibited excessive head tilt following dosing	HT
Animal exhibited excessive squinting of test eye following dosing	SQ

(22)

APPENDIX B

Ocular Evaluation Criteria (Kay and Calandra)

(23)

OCULAR EVALUATION CRITERIA

Maximum Mean Score (Days 0-3)	Maximum Mean Score	Persistence of Individual Scores	Descriptive Rating and C	lass
	24 hours = 0		Non-Irritating	1
0.00 – 0.49	24 hours > 0		Practically Non-irritating	2
0.50 – 2.49	24 hours = 0		Non-Irritating	1
0.50 - 2.49	24 hours > 0		Practically Non-irritating	2
2.50 – 14.99	48 hours = 0		Slight Irritant	3
2.30 - 14.33	48 hours > 0		Mild Irritant	4
15.00 – 24.99	72 hours = 0		Mild Irritant	4
15.00 - 24.99	72 hours > 0		Moderate Irritant	5
	7 day <u><</u> 20	> half of day 7 scores < 10	Moderate Irritant	5
05.00 40.00		> half of day 7 scores > 10, but no score > 20	Moderate Irritant	5
25.00 – 49.99		> half of day 7 scores > 10, and any score > 20	Severe Irritant	6
	7 day > 20		Severe Irritant	6
		> half of day 7 scores < 30	Severe Irritant	6
50.00 70.00	7 day <u><</u> 40	> half of day 7 scores > 30, but no score > 60	Severe Irritant	6
50.00 – 79.99		> half of day 7 scores > 30, and any score > 60	Very Severe Irritant	7
	7 day > 40		Very Severe Irritant	7
	7 day <u><</u> 80	> half of day 7 scores <u><</u> 60	Very Severe Irritant	7
80.00 – 99.99		> half of day 7 scores > 60, but no score > 100	Very Severe Irritant	7
		> half of day 7 scores > 60, and any score > 100	Extremely Severe Irritant	8
	7 day > 80		Extremely Severe Irritant	8
100.00 - 110.00	7 day <u><</u> 80		Very Severe Irritant	7
100.00 - 110.00	7 day > 80		Extremely Severe Irritant	8

SLI Study No. 3596.12 (24)

APPENDIX C

Individual Clinical Observations

	PAGE 1			
A PRIMARY EYE IRRITATION STUDY IN RABBITS	INDIVIDUAL CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)		
APF	SLI STUDY NO.: 3596.12	CLIENT: INL/A, US DEPARTMENT OF STATE		Animal No /Sev Clinical Observations
	SLI ST	CLIEN		4

Clinical Observations	Soft stools: Day 1
Animal No./Sex	R2257/F

(25)

(26)

APPENDIX D

SLI Personnel Responsibilities

SLI Study No. 3596.12	(27)		
SLI PERSONNEL RESPONSIBILITIES			
Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology		
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist		
Robert C. Springborn, Ph.D.	Chairman, President and CEO		
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus		
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director		
Christopher W. Wilson, B.S.	Associate Toxicologist		
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology		
Kathy A. Pugh, ALAT	Primary Technician/Team Leader		
Delores P. Knippen	Supervisor of Pharmacy		
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology		
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance		
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance		
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology		
Kathy M. Gasser	Supervisor of Archives		

AN ACUTE ORAL TOXICITY STUDY IN RATS WITH SPRAY--BRAVO

FINAL REPORT

OPPTS Guideline

870.1100

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

October 2, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.9

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 22

SLI Study No. 3596.9 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent:	Date

Title

Signature

(3)

SEP 3 0 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 19 Se 002

(4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	04/25/02
Body Weights	06/28/02
Protocol Amendment Review	08/23/02
Data Audit	08/26/02
Draft Report Review	08/26/02
Final Report Review	10/02/02

Reports to Study Director and Management

08/26/02, 10/02/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

120 Jernifer DU/McGue

Quality Assurance Auditor

Date 10/2/02

huta m Brsau

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 10/2/02

(5)

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT	4
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	6
6. SUMMARY	7
7. INTRODUCTION	8
8. MATERIALS AND METHODS	8
9. EXPERIMENTAL PROCEDURES	10
10. ANALYSIS OF DATA	11
11. MAINTENANCE OF RAW DATA AND RECORDS	12
12. RESULTS	12
13. CONCLUSION	13
14. REPORT REVIEW	13
15. REFERENCE	14

SLI Study No. 3596.9 (6)

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

2.	Individual Clinical Observations Individual Body Weights Individual Gross Necropsy Observations	17
<u>Ap</u>	pendix	

Α.	SLI Personnel Responsibilities	21
----	--------------------------------	----

(7)

6. SUMMARY

The single-dose oral toxicity of Spray--Bravo was evaluated in Sprague Dawley rats. A limit test was performed in which one group of five male and five female rats received a single oral administration of the test article at a dose of 5000 mg/kg body weight. Following dosing, the limit test rats were observed daily and weighed weekly. A gross necropsy examination was performed on all limit test animals at the time of scheduled euthanasia (day 14).

No mortality occurred during the limit test. Clinical abnormalities observed during the study included transient incidences of congested breathing, few feces and feces small in size. Body weight gain was noted for all animals during the test period. No gross internal findings were observed at necropsy on study day 14.

Under the conditions of this test, the acute oral LD50 of Spray--Bravo was estimated to be greater than 5000 mg/kg in the rat.

(8)

7. INTRODUCTION

This study was performed to assess the short-term toxicity of Spray--Bravo in Sprague Dawley rats when administered by gavage as a single oral dose. This study was intended to provide information on the potential health hazards of the test article with respect to oral exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was performed in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.1100, Acute Oral Toxicity, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 26, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 28. 2002 (dav 0) and concluded with necropsy on July 12, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Bravo ^a	S02.002.3596	Cloudy pale amber liquid	05/31/02	None provided
Ingredients: ^b				
Herbicide: Roundup SL				None
Lot Nos.: 4010/4212				provided
4397/4272				
4333/4340				None
4379/4076				provided
4397/4333				
Surfactant: Cosmo Flux-411F				
Lot No.: Unknown				

^aSample pooled at SLI from five different mixes of Spray--Bravo (top/middle/bottom). ^bIngredients used in the five Spray--Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc., analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.8.

SLI Study No. 3596.9 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing. The density of the test article was determined to be 1.08 g/mL.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Young adult, Hsd: Sprague Dawley® SD® rats were received from Harlan Sprague Dawley, Inc., Indianapolis, IN. Upon receipt, metal ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 69-75°F (21-24°C) and 37-58%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rodent Chow #5002 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study (except during fasting). The lot number and expiration date of each batch of diet used during the study were recorded. The

SLI Study No. 3596.9 (10)

feed was analyzed and certified by the supplier for nutritional components and environmental contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with metal ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were randomly selected from healthy stock animals using a computerized (Alpha DS-10 AcuTox) random numbers table to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. Females were nulliparous and nonpregnant. The male animals were approximately 8 weeks of age and weighed 239-263 g prior to fasting. The female animals were approximately 8 weeks of age and weighed 172-202 g prior to fasting.

9. EXPERIMENTAL PROCEDURES

9.1. Dosing

On day -1, the animals chosen for the limit test were weighed and fasted overnight. On day 0, the test article was administered orally as a single dose using a ball tipped stainless steel gavage needle attached to a syringe at the following level:

(11)

Dose Level	Dose Volume	Concentration	No. of Animals	
(mg/kg)	(mL/kg)	(%)	Male	Female
5000	4.63 ^a	100 ^b	5	5

^aAdusted based on a density of 1.08 g/mL ^bPooled test article.

Individual doses were calculated based on the animal's fasted (day 0) body weight. Animals were returned to ad libitum feeding after dosing.

9.2. Clinical Observations

The animals were observed for clinical abnormalities a minimum of two times on study day 0 (post-dose) and daily thereafter (days 1-14). A general health/mortality check was performed twice daily (in the morning and in the afternoon).

9.3. Body Weights

Individual body weights were obtained for the animals prior to fasting (day -1), prior to dosing on day 0 and on days 7 and 14.

9.4. Gross Necropsy

All animals were euthanized by carbon dioxide inhalation at study termination (day 14) and necropsied. Body cavities (cranial, thoracic, abdominal and pelvic) were opened and examined. No tissues were retained.

9.5. Protocol Deviations

No protocol deviations occurred during this study.

10. ANALYSIS OF DATA

Data from the study were analyzed and an LD50 value estimated as follows:

- < 50% Mortality: LD50 was estimated as greater than the administered dose.
- = 50% Mortality: LD50 was estimated as equal to the administered dose.
- > 50% Mortality: LD50 was estimated as less than the administered dose.

Body weight means and standard deviations were calculated separately for males and females.

SLI Study No. 3596.9 (12)

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Mortality Individual Data: Table 1

No mortality occurred during the limit test.

12.2. Clinical Observations Individual Data: Table 1

Clinical abnormalities observed during the study included transient incidences of congested breathing, few feces and feces small in size.

12.3. Body Weight Data Individual Data: Table 2

Body weight gain was noted for all animals during the test period.

12.4. Gross Necropsy Individual Data: Table 3

No gross internal findings were observed at necropsy on study day 14.

(13)

13. CONCLUSION

Under the conditions of this test, the acute oral LD50 of Spray--Bravo was estimated to be greater than 5000 mg/kg in the rat.

Date

Kimberly L. Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

zh

Dawn D. Rodabaugh, B.S. Associate Toxicologist

10/2/02 Date

SLI Study No. 3596.9 (14)

15. REFERENCE

1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.

STUDY NO.: 3596.9 INL/A, U.S DEPARTMENT OF STATE

TABLE 1

PAGE 1

			$0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14$	ď	<u>م</u>	<u>د</u>	d d	۵.	I LATERAL
AN ACUTE ORAL TOXI CITY STUDY IN RATS	I NDI VI DUAL CLI NI CAL OBSERVATI ONS (POSI TI VE FI NDI NGS)	DAY OF STUDY	2 3 4 5 6 7					Ъ	2=M0DERATE 3=SEVERE P=PRESENT L=LEFT R=RIGHT B=BILATERAL
AN ACUTE ORAL TOXI	I NDI VI DUAL CLI NI (POSI TI V		0 1	Ч	ď	д.		4 4 4 4	P=PRESENT L=LE
1									3=SEVERE
			SNO	IANASI A ATHI NG	ANASI A	ANASI A	ANASI A	HANASI A ATHI NG	2=MODERATE
	5000 MG/KG		OBSERVATI ONS	A5452 SCHEDULED EUTHANASIA CONGESTED BREATHING	A5454 SCHEDULED EUTHANASI A SOFT STOOLS	SCHEDULED EUTHANASI A FEW FECES	SCHEDULED EUTHANASIA FEW FECES	SCHEDULED EUTHANASI A RALES CONGESTED BREATHING	GRADE CODE: 1=SLI GHT
	MALES 50		MALE#	A5452 5	A5454 5	A5455 S	A5456 S	A5457 S	GRADE CODE:

(15)

Annex 56-C

609

STUDY NO.:	STUDY NO.: 3596.9							PAGE 2
NL/A, U. 5	S DEPARTMENT 0	F STATE			TABLE 1			
			ł	AN ACUTE ORAL TOXI CITY STUDY IN RATS	TOXI CI TY	STUDY IN	RATS	
TEMALES 5	FEMALES 5000 MG/KG			INDIVI DUAL CLINI CAL OBSERVATI ONS (POSITIVE FINDINGS)	AL CLINICAL OBSERVA (POSITIVE FINDINGS)	OBSERVATI O NDI NGS)	SN	
					DA	DAY OF STUDY		
FEMALE#	OBSERVATI ONS	SNC			0 1 2	3 4 5 6	2 3 4 5 6 7 8 9 10 11 12 13 14	
A5471	SCHEDULED EUTHANASI A CONGESTED BREATHING FECES SMALL IN SIZE	HANASI A ATHI NG V SI ZE			Ч Ч		۹.	
A5472	SCHEDULED EUTHANASI A	ANASI A					С,	
A5474	A5474 SCHEDULED EUTHANASI A	ANASI A					с.	
A5475	SCHEDULED EUTHANASI A	ANASI A					ď	
A5476	A5476 SCHEDULED EUTHANASI A FECES SMALL IN SIZE	HANASI A V SI ZE			Ч		۵.	
RADE CODI	GRADE CODE: 1=SLI GHT 2=MODERATE	2=MODERATE	3=SEVERE	3=SEVERE P=PRESENT L=LEFT	L=LEFT	R=RI GHT	B=BI LATERAL	

(16)

610

STUDY NO.: 3596.9 INL/A, U.S DEPARTMENT OF STATE

TABLE 2

PAGE 1

AN ACUTE ORAL TOXI CITY STUDY IN RATS INDIVIDUAL BODY WEIGHTS (GRAMS) 14 AT DEATH (DAY) 288 304 315 332 295 307 17.3 5 i $\begin{array}{c} 280\\ 14.4\\ 5\end{array}$ 263 282 290 297 268 2 DAY OF STUDY -1 0 230 8.5 5 221 232 235 235 235 235 235 235 221 $252 \\ 10.5 \\ 5$ 239 257 259 263 243 5000 MG/KG A5452 A5454 A5455 A5455 A5456 A5457 ANI MAL# MALES MEAN S. D. N -----

(17)

STUDY NO.: 3596.9 INL/A, U.S DEPARTMENT OF STATE

TABLE 2

PAGE 2

AN ACUTE ORAL TOXI CITY STUDY IN RATS	INDIVIDUAL BODY WEIGHTS (GRAMS)	14 AT DEATH (DAY)						
			217	200	200	244	204	213 18.7 5
		7 7	197	191	188	223	194	$\begin{array}{c} 199\\ 14.\ 0\\ 5\end{array}$
		DAY OF STUDY -1 0	166	161	157	184	165	$\begin{array}{c} 167\\ 10.4\\ 5\end{array}$
	5000 MG/KG	DAY DAY - 1	181	178	172	202	182	183 11. 3 5
	FEMALES	ANI MAL#	A5471	A5472	A5474	A5475	A5476	MEAN S. D. N

PAGE 1				FATE	SCHEDULED EUTHANASIA					
	E TABLE 3	AN ACUTE ORAL TOXICITY STUDY IN RATS	INDIVIDUAL GROSS NECROPSY OBSERVATIONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS					
	0F STAT			STUDY DAY	14	14	14	14	14	
3596. 9	INL/A, U.S. DEPARTMENT OF STATE		5000 MG/KG	DAY OF S DEATH	12-JUL-02	12- JUL- 02	12- JUL- 02	12-JUL-02	45457 12-JUL-02	
STUDY NO.: 3596.9	INL/A, U.S		MALES 5	ANI MAL#	A5452	A5454	A5455	A5456	A5457	

(19)

Annex 56-C

613

PAGE 2			FATE	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASIA
TABLE 3	AN ACUTE ORAL TOXICITY STUDY IN RATS	INDIVIDUAL GROSS NECROPSY OBSERVATIONS	OBSERVATI ON	ALL TISSUES WITHIN NORMAL LIMITS				
0F STATE			STUDY DAY	14	14	14	14	14
STUDY NO.: 3596.9 INL/A, U.S DEPARTMENT OF STATE		5000 MG/KG	DAY OF S DEATH	12-JUL-02 14	12-JUL-02	12-JUL-02	12-JUL-02 14	12-JUL-02 14
STUDY NO.: INL/A, U.S		FEMALES	ANI MAL#	A5471	A5472	A5474	A5475	A5476

(21)

APPENDIX A

SLI Personnel Responsibilities

SLI Study No. 3596.9 (22)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Christina L. Dutil, B.S.	Primary Technician/Acute Technician I
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

A PRIMARY SKIN IRRITATION STUDY IN RABBITS WITH SPRAY--BRAVO

FINAL REPORT

OPPTS Guideline

870.2500

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

September 3, 2002

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.13

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 25

SLI Study No. 3596.13 (2)

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

_

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (1)(A), (B), or (C).

Company: _____

Company Agent:	Date	

Title

Signature

(3)

AUG 2 8 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792).

Kimberly L. Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

127/02 8 Date

(4)

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review	04/25/02
Body Weights	06/24/02
Data Audit	08/12/02
Draft Report Review	08/12/02
Protocol Amendment Review	08/20/02
Final Report Review	09/03/02

Reports to Study Director and Management 08/12/02, 9/03/02

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

ena a douns

Rebecca A. Young Quality Assurance Team Leader

1110

Anita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date 9/3/01

Date 9/3/02

SLI Study No. 3596.13 (5)	
---------------------------	--

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
2. COMPLIANCE STATEMENT	3
3. QUALITY ASSURANCE STATEMENT	4
4. TABLE OF CONTENTS	5
5. LIST OF TABLES AND APPENDICES	6
6. SUMMARY	7
7. INTRODUCTION	B
8. MATERIALS AND METHODS	B
9. EXPERIMENTAL PROCEDURES10	D
10. ANALYSIS OF DATA12	2
11. MAINTENANCE OF RAW DATA AND RECORDS12	2
12. RESULTS	2
13. CONCLUSION1	3
14. REPORT REVIEW1	3
15. REFERENCES14	4

SLI Study No. 3596.13	(6)
-----------------------	-----

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

1.	Individual Dermal Irritation Scores	15
Ap	pendices	
A.	Macroscopic Dermal Grading System	16
Β.	Dermal Evaluation Criteria	20
C.	Individual Clinical Observations	22
D.	SLI Personnel Responsibilities	24

6. SUMMARY

The potential irritant and/or corrosive effects of Spray-Bravo were evaluated on the skin of New Zealand White rabbits. Each of three rabbits received a 0.5 mL dose of the test article as a single dermal application. The dose was held in contact with the skin under a semi-occlusive binder for an exposure period of four hours. Following the exposure period, the binder was removed and the remaining test article was wiped from the skin using gauze moistened with deionized water followed by dry gauze. Test sites were subsequently examined and scored for dermal irritation for up to 7 days following patch application.

(7)

Exposure to the test article produced very slight erythema on 3/3 test sites at the 1-hour scoring interval. The dermal irritation resolved completely on all test sites by study day 7.

Under the conditions of the test, Spray--Bravo is considered to be a slight irritant to the skin of the rabbit. The calculated Primary Irritation Index for the test article was 0.83.

(8)

7. INTRODUCTION

This study was performed to assess the potential irritant and/or corrosive effects of Spray--Bravo in New Zealand White rabbits when administered by a single dermal dose. This study was intended to provide information on the potential health hazards of the test article with respect to dermal exposure. Data from this study may serve as a basis for classification and/or labeling of the test article. This study was conducted in accordance with the US EPA, Health Effects Test Guidelines, OPPTS 870.2500, Acute Dermal Irritation, August 1998. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 26, 2002 (GLP initiation date). The in-life phase of the study was initiated with test article administration on June 24, 2002 (day 0) and concluded with final scoring on July 1, 2002.

8. MATERIALS AND METHODS

8.1. Test Article

The test article was received from the Sponsor and identified as follows:

	Assigned	Physical	Receipt	Expiration
	0	,		
Sponsor's ID	SLI ID	Description	Date	Date
SprayBravo ^a	S02.002.3596	Cloudy pale	05/31/02	None
-1-7		amber liquid		provided
		uniber liquid		provided
Ingredients: ^D				
Herbicide: Roundup SL				None
Lot No.: 4010/4212				provided
4397/4272				
4333/4340				
4379/4076				
4397/4333				
Surfactant: Cosmo Flux-411F				None
Lot No.: Unknown				provided
^a Sample pooled at SLL from five different mixes of Spray, Brave (top/middle/bottom)				

^aSample pooled at SLI from five different mixes of Spray --Bravo (top/middle/bottom). ^bIngredients used in the five Spray--Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105. Springborn Laboratories, Inc. analyzed the test article for the glyphosate (a.e.) which is presented in SLI Study No. 3596.8.

SLI Study No. 3596.13 (9)

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples) was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The remaining test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article was administered as received from the Sponsor and dispensed fresh on the day of dosing.

8.5. Animals and Animal Husbandry

8.5.1. Description, Identification and Housing

Adult, New Zealand White rabbits were received from Myrtle's Rabbitry, Thompson Station, TN. Upon receipt, plastic ear tags displaying unique identification numbers were used to individually identify the animals. Cage cards displaying at least the study number, animal number and sex were affixed to each cage. The animals were housed individually in suspended stainless steel cages. All housing and care were based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

8.5.2. Environment

The animal room temperature and relative humidity ranges were 71-76°F (22-24°C) and 43-61%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and room ventilation was set to produce 10-15 air changes/hour. The animal room temperature and relative humidity were recorded a minimum of once daily.

8.5.3. Food

PMI Certified Rabbit Chow #5322 (Purina Mills, Inc.) was provided ad libitum to the animals throughout the study. The lot number and expiration date of each batch of diet used during the study were recorded. The feed was analyzed and certified by the supplier for nutritional components and environmental

SLI Study No. 3596.13 (10)

contaminants. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, contaminants which may have been present were not expected to compromise the purpose of this study. Results of the dietary analyses (Certificates of Analysis) were provided by the manufacturer for each lot of diet. These are maintained by SLI.

8.5.4. Water

Municipal tap water treated by reverse osmosis was available ad libitum throughout the study. The purified water was supplied by an automatic watering system. Monitoring of the drinking water for contaminants is conducted by SLI and the records are available for inspection. Within generally accepted limits, contaminants which may have been present were not expected to compromise the purpose of this study. The water meets the standards specified under the EPA National Drinking Water Regulations (40 CFR Part 141).

8.5.5. Acclimation

Upon receipt, the animals were removed randomly from the shipping cartons, examined by qualified personnel, identified with plastic ear tags and then acclimated to the laboratory conditions for a minimum of five days. The animals were observed daily for overt physical or behavioral abnormalities, general health/moribundity and mortality.

8.5.6. Animal Selection

The animals chosen for study use were arbitrarily selected from healthy stock animals to avoid potential bias. All animals received a detailed pretest observation prior to dosing. Only healthy animals were chosen for study use. The male animals were approximately 17-18 weeks of age and weighed 3.4-3.7 kg prior to dosing.

9. EXPERIMENTAL PROCEDURES

9.1. Preliminary Procedures

On day -1, the animals chosen for use on the primary skin irritation study had the fur removed from the dorsal area of the trunk using an animal clipper. Care was taken to avoid abrading the skin during the clipping procedure.

9.2. Dosing

On the following day (day 0), the test article was applied to a small area of intact skin on each test animal (approximately 1 inch x 1 inch) as indicated below:

(%) Applied Patch Design Male	als	No. of Animals		Amount	Concentration
		Male	Patch Design	Applied	(%)
100 ^a 0.5 mL ~1" x 1" square 4-ply gauze patch 3		3	~1" x 1" square 4-ply gauze patch	0.5 mL	100 ^a

^aPooled test article

The test article was administered under the gauze patch. The gauze patch was held in contact with the skin at the cut edges with a nonirritating tape. Removal and ingestion of the test article was prevented by placing an elastic wrap over the trunk and test area (semi-occlusive binding). The elastic wrap was then further secured with adhesive tape around the trunk at the cranial and caudal ends. After dosing, collars were placed on each animal and remained in place until removal on day 3. After a four-hour exposure period, the binding materials were removed from each animal and the corners of the test site delineated using a marker. Residual test article was removed using gauze moistened with deionized water, followed by dry gauze.

9.3. Dermal Observations

Animals were examined for signs of erythema and edema and the responses scored at 1 hour after patch removal and 24, 48 and 72 hours and up to 7 days after patch application according to the Macroscopic Dermal Grading System presented in Appendix A which is based on Draize [2].

9.4. Clinical Observations

Any unusual observations and/or mortality were recorded. General health/mortality checks were performed twice daily (in the morning and in the afternoon).

9.5. Body Weights

Individual body weights were obtained for each animal prior to dosing on day 0.

9.6. Scheduled Euthanasia

Each animal was euthanized by an intravenous injection of sodium pentobarbital following its final scoring interval. Gross necropsy examinations were not required for these animals.

SLI Study No. 3596.13 (12)

9.7. Protocol Deviations

On two occasions, the animal room temperature range $[71-76^{\circ}F (22-24^{\circ}C)]$ exceeded the preferred range $[63-73^{\circ}F (17-23^{\circ}C)]$ during this study. This occurrence was considered to have had no adverse effect on the outcome of this study.

10. ANALYSIS OF DATA

The 1-, 24-, 48- and 72-hour erythema and edema scores for all animals were added and the total divided by the number of test sites x 4. The calculated Primary Irritation Index (P.I.I.) was classified according to the Dermal Evaluation Criteria [3] presented in Appendix B.

11. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

12. RESULTS

12.1. Dermal/Clinical Observations

Individual Data: Table 1 Individual Clinical Observations: Appendix C

Exposure to the test article produced very slight erythema on 3/3 test sites at the 1-hour scoring interval. The dermal irritation resolved completely on all test sites by study day 7.

Transient clinical observations of few feces, decreased food consumption and feces small in size were observed in one animal during the study and were not considered to be test article-related.

(13)

13. CONCLUSION

Under the conditions of the test, Spray–Bravo is considered to be a slight irritant to the skin of the rabbit. The calculated Primary Irritation Index for the test article was 0.83.

Kimberly L. Bonnette, M.S., LATG Study Director

14. REPORT REVIEW

Dawn D. Rodabaugh, B.S.

Associate Toxicologist

Date

Date 913/02

SLI Study No. 3596.13 (14)

15. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Draize, J.H., <u>Appraisal of the Safety of Chemicals in Foods, Drugs and</u> <u>Cosmetics</u>, The Association of Food and Drug Officials of the United States, 49-51, 1959.
- 3. Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation: Human and Domestic Animals-Addendum 3 on Data Reporting, US EPA, 1988.

PAGE 1 A PRIMARY SKIN IRRITATION STUDY IN RABBITS INDIVIDUAL DERMAL IRRITATION SCORES (SPRAY--BRAVO) Comments Primary Irritation Index 0.83 = Slight irritant ⊢ F Edema 0 0 0 0 0 0 0 0 0 0 00 0 SLI STUDY NO.: 3596.13 CLIENT: INL/A, US DEPARTMENT OF SATE Note: See Appendix A for definition of codes. Ervthema 0 0 0 72 Hours 72 Hours 48 Hours 24 Hours 48 Hours 72 Hours 24 Hours 48 Hours 24 Hours 7 Days Scoring 1 Hour 1 Hour Interval 1 Hour Body Weight (kg) R2111/M Animal No./Sex R2126/M R2122/M 3.364 3.650 3.567

(15)

Annex 56-C

631

Annex 56-C

SLI Study No. 3596.13 (16)

APPENDIX A

Macroscopic Dermal Grading System

SLI Study No. 3596.13 (17)

MACROSCOPIC DERMAL GRADING SYSTEM

ERYTHEMA AND EDEMA OBSERVATIONS			
OBSERVATION	DEFINITION	CODE	
Erythema – Grade 0	No erythema	0	
Erythema – Grade 1	Very slight erythema (barely perceptible)	1	
Erythema – Grade 2	Well-defined erythema	2	
Erythema – Grade 3	Moderate to severe erythema	3	
Erythema – Grade 4	Severe erythema (beet redness)	4	
Maximized Grade 4	Notable dermal lesions (see below)	M – 4 (see below)	
Edema – Grade 0	No edema	0	
Edema – Grade 1	Very slight edema (barely perceptible)	1	
Edema – Grade 2	Slight edema (edges of area well defined by definite raising)	2	
Edema – Grade 3	Moderate edema (raised approximately 1 millimeter)	3	
Edema – Grade 4	Severe edema (raised more than 1 millimeter and extends beyond the area of exposure)	4	
NOTE: Each animal was assigned an erythema and edema score. The most severely affected			

NOTE: Each animal was assigned an erythema and edema score. The most severely affected area within the test site was graded. If eschar, blanching, ulceration and/or necrosis greater than grade 1 was observed, then the "Maximized Grade 4" was assigned to the test site in place of the erythema score and the type of notable dermal lesion(s) (e.g., eschar - grade 2, blanching - grade 3, ulceration - grade 4, etc.) was noted. The presence of any other dermal changes (e.g., desquamation, fissuring, eschar exfoliation, etc.) was also recorded.

(18)

MACROSCOPIC DERMAL GRADING SYSTEM

NOTABLE DERMAL LESIONS			
OBSERVATION	CODE	DEFINITION	
Eschar – Grade 1	ES-1	Focal and/or pinpoint areas up to 10% of test site.	
Eschar – Grade 2	ES-2	> 10% < 25% of test site.	
Eschar – Grade 3	ES-3	> 25% < 50% of test site.	
Eschar – Grade 4	ES-4	> 50% of test site.	
Blanching – Grade 1	BLA-1	Focal and/or pinpoint areas up to 10% of test site.	
Blanching – Grade 2	BLA-2	> 10% < 25% of test site.	
Blanching – Grade 3	BLA-3	> 25% < 50% of test site.	
Blanching – Grade 4	BLA-4	> 50% of test site.	
Ulceration – Grade 1	U-1	Focal and/or pinpoint areas up to 10% of test site.	
Ulceration – Grade 2	U-2	> 10% < 25% of test site.	
Ulceration – Grade 3	U-3	> 25% < 50% of test site.	
Ulceration – Grade 4	U-4	> 50% of test site.	
Necrosis – Grade 1	NEC-1 (color)	Focal and/or pinpoint areas up to 10% of test site (note color of necrosis).	
Necrosis – Grade 2	NEC-2 (color)	> 10% < 25% of test site (note color of necrosis).	
Necrosis – Grade 3	NEC-3 (color)	> 25% < 50% of test site (note color of necrosis).	
Necrosis – Grade 4	NEC-4 (color)	> 50% of test site (note color of necrosis).	

(19)

MACROSCOPIC DERMAL GRADING SYSTEM

ADDITIONAL DERMAL FINDINGS			
OBSERVATION	DEFINITION	CODE	
Desquamation	Characterized by scaling or flaking of dermal tissue or without denuded areas.	DES	
Fissuring	Characterized by cracking of the skin with or without moist exudate. Fissuring should be checked prior to removing the animal from the cage and manipulating the test site.	FIS	
Eschar Exfoliation	The process by which areas of eschar flake off the test site.	EXF	
Test Site Staining	Skin located at test site appears to be discolored, possibly due to test article (note color of staining).	TSS (color)	
Erythema Extends Beyond the Test Site	The erythema extends beyond the test site. Note: A study director should be contacted for erythema extending beyond the test site.	ERB	
Superficial Lightening	Characterized by pale area(s) (almost a burn-like appearance) in the test site. However, erythema may still be observed through the pale area. Note: This observation may affect the overall erythema score of the test site. This observation may progress to other observations resulting in notable dermal lesions, but SL itself will not be considered a notable dermal lesion that will result in a dermal score to be maximized since it does not result in any in-depth injury. To be coded using an area designation (see below).	-	
Superficial Lightening - Grade 1	Focal and/or pinpoint areas up to 10% of the test site	SL-1	
Superficial Lightening - Grade 2	> 10% < 25% of test site	SL-2	
Superficial Lightening - Grade 3	> 25% < 50% of test site	SL-3	
Superficial Lightening - Grade 4	> 50% of test site	SL-4	
Dermal Irritation - Outside of the Test Site	Noticeable irritation outside of test site probably due to the binding tape material. This notation will only be made for reactions greater than what are normally observed from tape removal which does not interfere with the scoring of the test site.	IT	

Annex 56-C

SLI Study No. 3596.13 (20)

APPENDIX B

Dermal Evaluation Criteria

(21)

DERMAL EVALUATION CRITERIA		
Primary Irritation Index (P.I.I.)	Irritation Rating	
0.00	Nonirritant	
0.01 - 1.99	Slight Irritant	
2.00 - 5.00	Moderate Irritant	
5.01 - 8.00	Severe Irritant	

Annex 56-C

SLI Study No. 3596.13 (22)

APPENDIX C

Individual Clinical Observations

SLI STUDY NO.: 3596.13 A PRIMARY SKIN IRRITATION STUDY IN RABBITS CLIENT: INL/A, US DEPARTMENT OF STATE INDIVIDUAL CLINICAL OBSERVATIONS (POSITIVE FINDINGS)

PAGE 1

Clinical Observations	ew feces: Day 3	Decreased food consumption: Days 3, 5	Feces small in size: Day 4
Cli	Fe	De	Fe
Animal No./Sex	R2122/M		

639

Annex 56-C

SLI Study No. 3596.13 (24)

APPENDIX D

SLI Personnel Responsibilities

SLI Study No. 3596.13 (25)

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Associate Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Rusty E. Rush, M.S., LAT, DABT	Director, Neurotoxicity and Transgenics
Jason W. Smedley, B.S.	Assistant Toxicologist
Pamela S. Smith, ALAT	Supervisor of Acute Toxicology
Lyndsay K. Simindinger, A.S.	Primary Technician/Acute Technician I
Delores P. Knippen	Supervisor of Pharmacy
Steven H. Magness, B.S., LATG	Senior Supervisor of Gross and Fetal Pathology
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
J. Dale Thurman, D.V.M., M.S., DACVP	Senior Director, Pathology
Kathy M. Gasser	Supervisor of Archives

PURITY ANALYSIS FOR GLYPHOSATE OF SPRAY--BRAVO (ACTIVE INGREDIENT)

FINAL REPORT

Author

Kimberly L. Bonnette, M.S., LATG

Study Completed on

January 9, 2003

Performing Laboratory

Springborn Laboratories, Inc. (SLI) Ohio Research Center 640 North Elizabeth Street Spencerville, Ohio 45887

SLI Study No.

3596.8

Submitted to

INL/A U.S. Department of State 2201 C St. NW SA-4 Washington, DC 20520

Page 1 of 30

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA (d)(1)(A), (B), or (C).

Company: _____

Company Agent: _____ Date _____

Title

Signature

(3)

NOV 2 1 2002

2. COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Standards as described by the EPA (40 CFR Parts 160 and 792) with the following exception:

Since the test article mixtures were prepared in the field, the test article mixtures and the sample collection by the Sponsor were not performed according to GLP guidelines.

Kimberly L\ Bonnette, M.S., LATG Study Director/Author Springborn Laboratories, Inc.

Rogers Woolfolk Senior Aviation Advisor Sponsor/Submitter INL/A U.S. Department of State

Date

Date 20 Nor 02

Dhaaa

3. QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

Phase	Date
Protocol Review Purity Analysis Data Audit Draft Report Review Protocol Amendment Review Final Report Review	04/25/02 06/11/02 11/11/02 11/11/02 11/11/02 01/09/03
	01100100

Reports to Study Director and Management 11/11/02, 01/09/03

Date

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Geohaniek Clemonn

Stephanie K. Clemons Quality Assurance Auditor II

Date <u>1/9/03</u>

Ánita M. Bosau, RQAP-GLP Senior Director, Compliance Assurance

Date _ <u> 1/9/03</u>

4. TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS2	2
2. COMPLIANCE STATEMENT	}
3. QUALITY ASSURANCE STATEMENT4	ŀ
4. TABLE OF CONTENTS5	;
5. LIST OF TABLES AND APPENDICES)
6. SUMMARY	,
7. INTRODUCTION8	}
8. MATERIALS AND METHODS8	}
9. EXPERIMENTAL PROCEDURE9)
10. ANALYTICAL CHEMISTRY10)
11. SPRAYBRAVO ANALYSIS10)
12. STATISTICAL ANALYSIS	}
13. PROTOCOL DEVIATIONS13	;
14. MAINTENANCE OF RAW DATA AND RECORDS13	}
15. RESULTS	ŀ
16. CONCLUSION15	;
17. REPORT REVIEW	5

5. LIST OF TABLES AND APPENDICES

<u>Tables</u>

1.	Standard Curve and Sample Analysis Values for the Before Use-Purity Analysis	.16
2.	Sample Analysis Values and % Error Based on Theoretical Value (Before Use-Purity)	
3.	Standard Curve and Sample Analysis Values for the After Use-Purity Analysis for (Stability)	
4.	Sample Analysis Values and % Error Based on Theoretical Value (After Use- Purity for Stability)	.19
<u>App</u>	pendices	
A.	Statistical Analysis	20

647

6. SUMMARY

The objective of this study was to assess the concentration(s) of glyphosate (active ingredient) in the Spray--Bravo formulation.

Five test article mixtures were prepared in the field by the Sponsor. Three 500 mL samples of each mixture were collected from the top/middle/bottom (or beginning/middle/end) of Aircraft 3077 (Test Article Mixtures 1 and 5), Aircraft 3064 (Test Article Mixtures 2 and 4) and Aircraft - unknown (Test Article Mixture 3 – aircraft not documented). Test Article mixtures were prepared as follows:

Ingredient	Amount Added (gallons)					
Herbicide:	88					
Roundup SL						
Surfactant:	2					
Cosmo Flux-411F						
Well water	110					
Mixing time: 10-15 minutes in flight.						

Test article mixtures were prepared on two separate days (May 26, 2002, for Test Article Mixtures 1, 2 and 3; and May 28, 2002 for Test Article Mixtures 4 and 5).

The overall concentration of the Spray-Bravo was 16.33 [in terms of % glyphosate (a.e.)] before use at SLI and 17.04 [in terms of % glyphosate (a.e.)] after use at SLI, indicating that the test material was stable during use at SLI.

The overall result (~16.33% glyphosate a.e.) was slightly higher than the anticipated 14.80% glyphosate (a.e.), but well within acceptable error of mixing conditions in the field. Therefore, since the results of the analysis were appropriate (and would provide conservative results for toxicity, irritation and sensitization since they were slightly higher than expected), approximately 400 mL of each sample were pooled into a single container for use in the remaining studies.

7. INTRODUCTION

This study was performed to assess the concentrations of glyphosate (active ingredient) in Spray-Bravo. This study was performed to support studies conducted under the US EPA, Health Effects Test Guidelines. This study was performed at Springborn Laboratories, Inc., 553 North Broadway, Spencerville, Ohio. The protocol was signed by the Study Director on April 25, 2002 (GLP initiation date). The test article mixtures were analyzed for glyphosate (a.e.) initially on June 11, 2002, prior to all other studies and again on August 21, 2002, after all studies were complete for purposes of stability.

8. MATERIALS AND METHODS

8.1. Test Article

Sponsor's ID	Assigned SLI ID	Physical Description	Receipt Date	Expiration Date
Spray—Bravo ^a	S02.002.3596	Cloudy pale amber liquid	05/31/02	None provided
Ingredients: ^b				
Herbicide: Roundup SL				None provided
Lot Nos.: 4010/4212				
4397/4272				
4333/4340				
4379/4076				
4397/4333				
Surfactant: Cosmo Flux-411F				None provided
Lot No.: Unknown				

The test article was received from the Sponsor and identified as follows:

^aSample pooled at SLI from five different mixes of Spray-Bravo (top/middle/bottom).

^bIngredients used in the five Spray--Bravo mixes that were prepared by the Sponsor.

The test article was stored at room temperature. The Sponsor was responsible for any necessary evaluations related to identity, strength, purity, composition, stability and method of synthesis of the test material according to 40 CFR 160.105 and 40 CFR 792.105.

8.2. Retention Sample

An approximate 1 mL retention sample of each test article mixture sample (top/middle/bottom, maintained separately for a total of fifteen 1 mL samples)

was taken and stored at SLI at room temperature. In addition, a 10 mL retention sample of the pooled test article samples (from the 5 test article mixtures) was collected and stored at SLI at room temperature. These samples serve as the retention samples for all studies conducted with this material.

8.3. Test Article Disposition

The test article was returned to the Sponsor following completion of all studies with the test article.

8.4. Method of Test Article Preparation

The test article containers were hand shaken and dispensed fresh on the day of analysis. The samples were stirred continuously until diluted for analysis.

9. EXPERIMENTAL PROCEDURE

9.1. Sample Collection

Samples were collected from the prepared test article mix using pre-labeled containers provided by SLI as follows:

		— · · ·
Test Article Mix 1	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 2	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 3	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 4	500 mL	Beginning
	500 mL	Middle
	500 mL	End
Test Article Mix 5	500 mL	Beginning
	500 mL	Middle
	500 mL	End

Five test article mixtures were prepared in the field by the Sponsor. Three 500 mL samples of each mixture were collected from the top/middle/bottom (or beginning/middle/end) Aircraft 3077 (Test Article Mixtures 1 and 5), Aircraft 3064

(Test Article Mixtures 2 and 4) and Aircraft - unknown (Test Article Mixture 3 – aircraft not documented). The Test Article mixtures were prepared as follows:

Ingredient	Amount Added (gallons)						
Herbicide:	88						
Roundup SL							
Surfactant:	2						
Cosmo Flux-411F							
Well water	110						
Mixing time: 10 (Test mixture 4) -15 (Test mixtures 1, 2, 3 and 5) minutes in flight.							

Test article mixtures were prepared on two separate days (May 26, 2002, for Test Article Mixtures 1, 2 and 3; and May 28, 2002 for Test Article Mixtures 4 and 5).

A total of fifteen 500 mL samples were collected. The individual (Brad Carter, Assistant Operations Manager, Embajada Americana, Carrera 45, No. 22D-45, Bogota, Columbia, South America) collecting samples completed the SLI provided form upon collection including signature and date when collected at San Jose del Guaviare, Columbia. Samples were maintained under ambient conditions.

10. ANALYTICAL CHEMISTRY

The samples were analyzed in terms of the active ingredient for concentration determination prior to any dosing (Before Use-Purity) and again after completion of all studies for stability determination (After Use-Purity). All analytical dilutions were performed in duplicate (all dilutions were performed on the same day).

The analytical method was a previously validated method for the analysis of glyphosate in solution. Purity analysis of the test article was performed in duplicate by comparison of the test article with supplied reference standards of known concentrations.

11. SPRAY--BRAVO ANALYSIS

The analytical method for the analysis of the glyphosate component of Spray--Bravo was validated prior to the purity analyses performed at Springborn Laboratories, Inc. This method was utilized to determine both the purity and the stability of the Spray--Bravo test material before and after use at SLI. (11)

SLI Study No. 3596.8

11.1. Experimental System

11.1.1. HPLC System

HPLC Model: Waters Waters 600E Pump: Injector: Waters WISP 717 Detector: Waters 2487 Data System: H-P 3396B Integrator Precolumn: Phenomenex, SecurityGuard, C18, 4.0 x 3.0 mm ID Column: Phenomenex, Spherex, C18, 5 µ, 250 x 4.6 mm ID Temperature: Ambient Detection: 500 nm, 0.4000 AUFS Mobile Phase: A: 0.05 M HCO₂NH₄, pH 3.6/5% ACN (Acetonitrile); B: 100% ACN Gradient: 100% A hold for 6 minutes; linear change to 25% A/75% B over 1 minute; hold for 5 minutes; linear change to 100% A over 1 minute: hold at 100% A for 15 minutes. Flow Rate: 1.0 mL/min Injection Volume: 10 µL

11.1.2. Apparatus

Balance:	Mettler AG 245, accuracy of 0.0001 gram
Glassware:	Assorted volumetric glassware
Filters:	Millipore 0.2 µ Nylon-66; Whatman Puradisc 25PP 0.45µm
Oven:	Boekel Model 107905
Pipet::	Mettler VoluMate, 200-1000 μL

11.1.3. Solutions and Reagents

11.1.3.1. Reagents

Water, Fisher, HPLC Grade, Lot # 024948, 025012 Acetonitrile, Baker, HPLC Grade, Lot # M15811 NBD Chloride, Aldrich, 98%, Lot #12214L1 Hydrochloric Acid, Fisher, ACS Grade, Lot # 012161 Potassium Tetraborate Tetrahydrate, Aldrich, 99%, Lot # 15325D1 Formic Acid, Fisher, Laboratory Grade, 90%, Lot # 003630 Ammonium Formate, Fisher, Certified, Lot # 990125 Glyphosate, Sigma, 95%, Lot # 71K36491

1.1.3.2 Solutions

<u>0.37 M Borate Solution</u>: Prepared by dissolving approximately 11.44 g of potassium tetraborate tetrahydrate in 100 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>1.2 N HCI</u>: Prepared by dissolving 10 mL of HCI in 90 mL of water. The resulting solution was stable for 6 months under ambient storage conditions.

<u>25 mM NBD-CI</u>: Prepared by dissolving approximately 2.5 g of NBD-CI in 500 mL of methanol. The resulting solution was stable for 6 months under ambient storage conditions.

<u>Mobile Phase A</u>: Prepared by dissolving approximately 3.153 g of ammonium formate in 1900 mL of water. The pH was adjusted to approximately 3.6 with formic acid prior to the addition of 100 mL of acetonitrile. The resulting solution was mixed thoroughly, filtered through a 0.2μ Nylon-66 filter and degassed by helium sparging prior to use.

Mobile Phase B: Acetonitrile used 100% as received.

Diluent: All standards and samples were diluted in water.

<u>Stock Standard Solution:</u> Prepared by dissolving approximately 30 mg of glyphosate standard in a 100 mL flask with diluent.

<u>Standard Solutions</u>: Prepared by serially diluting the stock standard solution with water. The final concentrations of the solutions were in the range of approximately 0.02 to 0.14 mg/mL. These solutions were then further diluted in diluent at a ratio of 3:10 and filtered through Whatman Puradisc 25PP 0.45 μ m filters prior to derivatization.

<u>Purity Solutions</u>: Prepared by diluting 1.0 mL aliquots of each sample to a final volume of 100 mL with diluent. The solutions were then further diluted in diluent first at a ratio of 2:50 and then at a ratio of 4:10. The resulting solutions were then filtered through Whatman Puradisc 25PP 0.45 μ m filters prior to derivatization. These preparations were performed in duplicate for each sample.

<u>Derivatization Procedure:</u> In order to analyze the glyphosate component, a precolumn derivatization was performed by adding 1.2 mL of the appropriate control, standard, or sample solution to a labeled scintillation vial. Both 0.8 mL of the borate solution and 2.4 mL of the NBD-Cl solution were added to each vial. The vials were then capped and shaken by hand prior to being heated in an oven

at 80° C for 30 minutes. After removal from the oven, the vials were allowed to cool for 10 minutes followed by the addition of 0.9 mL of the HCl solution. After the vials were again shaken by hand, they were allowed to stand for 10 minutes in order for incipient precipitation to occur. These solutions were then transferred to injection vials.

11.2. Analytical Procedures

11.2.1. Standard Curve Analysis

The peak areas of the glyphosate acid component of each standard were determined, measured, combined, and plotted as a function of concentration to generate a standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 3.

11.2.2. Sample Analysis

The peak areas of the glyphosate acid component of each sample were measured and combined and then the concentration was determined by linear fit to the standard curve. The actual values used for the calculations are shown in Chemistry Tables 1 and 3.

12. STATISTICAL ANALYSIS

A statistical analysis was conducted on the average results of the % glyphosate (a.e.) for each test article mixture as compared to the theoretical value [14.80% glyphosate (a.e.) as calculated by the Sponsor] and for the combined results of all test article mixture samples as compared to the theoretical value using one way analysis of variance (ANOVA).

13. PROTOCOL DEVIATIONS

No protocol deviations occurred during this study.

14. MAINTENANCE OF RAW DATA AND RECORDS

All original raw data, the final report and magnetically encoded records were transferred to the SLI archives for a period of 10 years. The Sponsor will be contacted prior to final disposition of these items.

15. RESULTS

15.1. Analytical Chemistry Results

Individual Data: Tables 1-4

The actual sample results of the before use purity analyses are shown in Chemistry Table 1. The % errors of the results of the before use purity analyses are shown in Chemistry Table 2. The actual sample results of the after use purity (stability) analyses are shown in Chemistry Table 3. The % errors of the results of the after use purity (stability) analyses are shown in Chemistry Table 3. The % errors of the results of the after use purity (stability) analyses are shown in Chemistry Table 4. All concentration values are reported in terms of the acid equivalent (a.e.) of the glyphosate. The overall concentration of the Spray Bravo was 16.33 [in terms of % glyphosate (a.e.)] before use at SLI and 17.04 [in terms of % glyphosate (a.e.)] after use at SLI, indicating that the test material was stable during use at SLI. The average % error (based upon a comparison between the analyzed value and the theoretical value) for the before use purity analysis was between 4.8 and 20.1%. The average % error (based upon a comparison between the analyzed value and the theoretical value) for the after use purity (stability) analysis was between 7.1 and 30.7%.

15.2. Statistical Analysis

Individual Data: Appendix A

Results of the Before-Use statistical analysis indicate that Test Article Mixtures 2, 3 and 5 (17.07, 17.78 and 17.35% glyphosate a.e.) were significantly higher than the theoretical value (14.8% glyphosate a.e.). However, since these values were within the possible error rate of field mixing and since these samples were to be part of a pooled sample for dosing the remaining studies, these samples were included. Overall, the results of all mixtures for the pooled sample (16.33% glyphosate a.e.) were significantly higher than the theoretical value (14.8% glyphosate a.e.) were significantly higher than the theoretical value (14.8% glyphosate a.e.). Again, this result was considered within possible field mixing error and would provide a conservative estimate of toxicity, irritation and sensitization for the remaining studies. Therefore, the pooled sample was considered to be acceptable for use.

16. CONCLUSION

The overall result (~16.33% glyphosate a.e.) was slightly higher than the anticipated 14.80% glyphosate (a.e.), but well within acceptable error of mixing conditions in the field. Therefore, since the results of the analysis were appropriate (and would provide conservative results for toxicity, irritation and sensitization since they were slightly higher than expected), approximately 400 mL of each sample were pooled into a single container for use in the remaining studies.

Kimberly L! Bonnette, M.S., LATG Study Director

17. REPORT REVIEW

Dawn D. Rodabaugh, B.S. Toxicologist

10mons

M. Gardner Clemons, B.A. Manager of Analytical Chemistry and Pharmacy

Date

Date

Date 1.9.2003

(16)

Chemistry Table 1

Standard Curve and Sample Analysis Values for the Before Use-Purity Analysis (6/11/2002)

	Theoretical Conc.		Actual Conc. [%						
Sample Type	(mg/L)	Peak Area	Glyphosate (a.e.)]						
Std 1	0.008637	35543	NA						
Std 2	0.01727	73477	NA						
Std 3	0.02591	110900	NA						
Std 4	0.03456	154704	NA						
Std 5	0.04320	193670	NA						
Test Mix # 1, B	NA	112077	15.98						
Test Mix # 1, B'	NA	112767	16.08						
Test Mix # 1, M	NA	114677	16.34						
Test Mix # 1, M'	NA	118352	16.84						
Test Mix # 1, E	NA	126172	17.90						
Test Mix # 1, E'	NA	136131	19.25						
Test Mix # 2, B	NA	128331	18.19						
Test Mix # 2, B'	NA	129222	18.31						
Test Mix # 2, M	NA	133033	18.83						
Test Mix # 2, M'	NA	129348	18.33						
Test Mix # 2, E	NA	117614	16.74						
Test Mix # 2, E'	NA	114082	16.26						
Test Mix # 3, B	NA	106042	15.16						
Test Mix # 3, B'	NA	109377	15.61						
Test Mix # 3, M	NA	108735	15.53						
Test Mix # 3, M'	NA	108624	15.51						
Test Mix # 3, E	NA	110508	15.77						
Test Mix # 3, E'	NA	108454	15.49						
Test Mix # 4, B	NA	119612	17.01						
Test Mix # 4, B'	NA	120670	17.15						
Test Mix # 4, M	NA	125863	17.86						
Test Mix # 4, M'	NA	122465	17.39						
Test Mix # 4, E	NA	119981	17.06						
Test Mix # 4, E'	NA	124304	17.64						
Test Mix # 5, B	NA	98279	14.11						
Test Mix # 5, B'	NA	99554	14.28						
Test Mix # 5, M	NA	96188	13.83						
Test Mix # 5, M'	NA	93828	13.50						
Test Mix # 5, E	NA	98206	14.10						
Test Mix # 5, E'	NA	96311	13.84						

Correlation coefficient = 0.9996; NA = Not Applicable Note: B = Beginning; M = Middle; E = End; ' = Replicate sample

Chemistry Table 2 Sample Analysis Values and % Error Based on Theoretical Value (Before Use-Purity)

	%	Date of		6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	
	Average %								15.3						20.1						4.8						17.2						
	Average	% Error by	Type		8.3		12.1		25.5		23.3		25.5		11.5		4.0	2	4.9		5.6		15.4		19.1		17.2		4.1		7.7		4
			% Error	8.0	8.6	10.4	13.8	20.9	30.1	22.9	23.7	27.2	23.9	13.1	9.9	2.4	5.5	4.9	4.8	6.6	4.7	14.9	15.9	20.7	17.5	15.3	19.2	4.7	3.5	6.6	8.8	4.7	L
Overall	Average %	Glyphosate	(a.e.)	16.33																-			5				-						
Average %	Glyphosate	(a.e.) by Test	Mix						17.07						17.78						15.51						17.35						10 01
Average %	Glyphosate	(a.e.) by	Sample Type		16.03		16.59		18.58		18.25		18.58		16.50		15.39		15.52		15.63		17.08		17.63		17.35		14.20		13.67		10 01
	%	Glyphosate	(a.e.)	15.98	16.08	16.34	16.84	17.90	19.25	18.19	18.31	18.83	18.33	16.74	16.26	15.16	15.61	15.53	15.51	15.77	15.49	17.01	17.15	17.86	11.39	00.7	11.04	14.11	14.28	13.83	13.50	14.10	13 84
		 • •	Sample Type	beginning	Beginning'	Middle	Middle'	End	End'	Beginning	Beginning'	Middle	Middle'	End	End	Reginning	Beginning'	Middle	Middle'	End	End'	Beginning	peginning.	Middle	MIGUIE		Deterior	Decimina	buluuld	Middle	Middle		End.
		l est Mix	V	-	-	-	-	-	-	2	2	2	~	2	~ ~	n (m	8	m	e		4 •	4 •	4 -	+ -	• •	4 u	0 4	0 4		<u>о</u> ч	0	0

658

Chemistry Table 3

Standard Curve and Sample Analysis Values for the After Use-Purity Analysis for (Stability) (8/21/2002)

Sample Type Conc. (mg/L) Peak Area Actual Conc. (mg/mL) Std 1 0.008580 29599 NA Std 2 0.01716 64382 NA Std 3 0.02574 94096 NA Std 4 0.03432 124119 NA Std 5 0.04290 147270 NA Test Mix # 1, B NA 94928 16.64 Test Mix # 1, B' NA 94928 16.61 Test Mix # 1, B' NA 94928 16.61 Test Mix # 1, B' NA 94928 16.61 Test Mix # 1, E NA 92202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110275 19.43 Test Mix # 2, B NA 107060 18.84 Test Mix # 2, C NA 107729 17.15 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 97729 17.15 Test Mix # 3, B' <th></th> <th>Theoretical</th> <th></th> <th></th>		Theoretical		
Sample Type (mg/L) Peak Area (mg/mL) Std 1 0.008580 29599 NA Std 2 0.01716 64382 NA Std 3 0.02574 94096 NA Std 4 0.03432 124119 NA Std 5 0.04290 147270 NA Test Mix # 1, B NA 95077 16.67 Test Mix # 1, B' NA 94928 16.64 Test Mix # 1, B' NA 94778 16.61 Test Mix # 1, B' NA 94202 16.14 Test Mix # 1, B' NA 92202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110867 19.43 Test Mix # 2, B' NA 107060 18.84 Test Mix # 2, E NA 107748 18.97 Test Mix # 2, E NA 101906 17.91 Test Mix # 3, B NA 9602 17.13 Test Mix # 3, B' NA </td <td></td> <td></td> <td></td> <td>Actual Conc.</td>				Actual Conc.
Std 1 0.008580 29599 NA Std 2 0.01716 64382 NA Std 3 0.02574 94096 NA Std 4 0.03432 124119 NA Std 5 0.04290 147270 NA Test Mix # 1, B NA 95077 16.67 Test Mix # 1, M NA 94928 16.64 Test Mix # 1, M NA 94928 16.64 Test Mix # 1, M NA 94928 16.64 Test Mix # 1, E NA 9202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110275 19.54 Test Mix # 2, M' NA 107060 18.84 Test Mix # 2, M' NA 101906 17.91 Test Mix # 2, E' NA 101906 17.13 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 90789 15.85 Test Mix # 3, E' NA	Sample Type		Peak Area	
Std 2 0.01716 64382 NA Std 3 0.02574 94096 NA Std 4 0.03432 124119 NA Std 5 0.04290 147270 NA Test Mix # 1, B NA 95077 16.67 Test Mix # 1, B' NA 94928 16.64 Test Mix # 1, B' NA 94778 16.61 Test Mix # 1, E NA 94202 16.14 Test Mix # 1, E NA 92202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110867 19.54 Test Mix # 2, B' NA 107060 18.84 Test Mix # 2, M' NA 107748 18.97 Test Mix # 2, E NA 101906 17.91 Test Mix # 3, B NA 98293 17.25 Test Mix # 3, B' NA 97602 17.13 Test Mix # 3, M' NA 90589 15.85 Test Mix # 3, M' N				
Std 3 0.02574 94096 NA Std 4 0.03432 124119 NA Std 5 0.04290 147270 NA Test Mix # 1, B NA 95077 16.67 Test Mix # 1, B' NA 94928 16.64 Test Mix # 1, M' NA 94778 16.61 Test Mix # 1, E NA 9202 16.14 Test Mix # 1, E NA 106892 18.81 Test Mix # 2, B NA 110867 19.54 Test Mix # 2, B' NA 110275 19.43 Test Mix # 2, M' NA 107060 18.84 Test Mix # 2, M' NA 107060 17.91 Test Mix # 2, E NA 101906 17.91 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 90909 15.91 Test Mix # 3, B' NA 93383 16.36 Test Mix # 3, E NA 93383 16.36 Test Mix # 3, E				NA
Std 5 0.04290 147270 NA Test Mix # 1, B NA 95077 16.67 Test Mix # 1, B' NA 94928 16.64 Test Mix # 1, M' NA 94928 16.61 Test Mix # 1, M' NA 94978 16.61 Test Mix # 1, E NA 9202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110275 19.43 Test Mix # 2, B' NA 110275 19.43 Test Mix # 2, M' NA 107060 18.84 Test Mix # 2, M' NA 107748 18.97 Test Mix # 2, E NA 101906 17.91 Test Mix # 2, E' NA 98293 17.25 Test Mix # 3, B NA 97729 17.15 Test Mix # 3, B' NA 90909 15.91 Test Mix # 3, E NA 90589 15.85 Test Mix # 3, E' NA 90589 15.85 Test Mix				NA
Std 5 0.04290 147270 NA Test Mix # 1, B NA 95077 16.67 Test Mix # 1, B' NA 94928 16.64 Test Mix # 1, M' NA 94928 16.61 Test Mix # 1, M' NA 94978 16.61 Test Mix # 1, E' NA 92202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110867 19.54 Test Mix # 2, B' NA 107060 18.84 Test Mix # 2, M' NA 107060 18.84 Test Mix # 2, M' NA 107060 17.91 Test Mix # 3, B NA 107060 17.91 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 97729 17.15 Test Mix # 3, B' NA 90729 15.73 Test Mix # 3, B' NA 90589 15.85 Test Mix # 3, E' NA 90589 15.85 Test M	Std 4	0.03432	124119	NA
Test Mix # 1, B' NA 94928 16.64 Test Mix # 1, M NA 94778 16.61 Test Mix # 1, M' NA 85965 15.01 Test Mix # 1, E' NA 92202 16.14 Test Mix # 2, B NA 106892 18.81 Test Mix # 2, B' NA 110867 19.54 Test Mix # 2, B' NA 110275 19.43 Test Mix # 2, B' NA 107060 18.84 Test Mix # 2, M' NA 107748 18.97 Test Mix # 2, E NA 101906 17.91 Test Mix # 2, E' NA 101906 17.91 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 99009 15.91 Test Mix # 3, M' NA 90729 17.15 Test Mix # 3, M' NA 90589 15.85 Test Mix # 3, E' NA 90589 15.85 Test Mix # 4, B NA 113974 20.10 <		0.04290	147270	NA
Test Mix # 1, M NA 94778 16.61 Test Mix # 1, M' NA 85965 15.01 Test Mix # 1, E NA 92202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110867 19.54 Test Mix # 2, B' NA 110275 19.43 Test Mix # 2, M' NA 107060 18.84 Test Mix # 2, M' NA 107060 18.84 Test Mix # 2, E' NA 101906 17.91 Test Mix # 3, B NA 98293 17.25 Test Mix # 3, B' NA 97602 17.13 Test Mix # 3, B' NA 90909 15.91 Test Mix # 3, M' NA 90589 15.85 Test Mix # 3, E' NA 90589 15.85 Test Mix # 4, B' NA 113409 20.00 Test Mix # 4, B' NA 113409 20.00 Test Mix # 4, B' NA 113409 20.10	Test Mix # 1, B	NA	95077	16.67
Test Mix # 1, M'NA8596515.01Test Mix # 1, ENA9220216.14Test Mix # 1, E'NA10689218.81Test Mix # 2, BNA11086719.54Test Mix # 2, B'NA11027519.43Test Mix # 2, MNA10706018.84Test Mix # 2, M'NA10774818.97Test Mix # 2, ENA10190617.91Test Mix # 2, ENA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, M'NA9090915.91Test Mix # 3, ENA9058915.85Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11397420.10Test Mix # 4, B'NA11397420.10Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 4, E'NA10014417.59Test Mix # 5, B'NA9045115.83	Test Mix # 1, B'	NA	94928	16.64
Test Mix # 1, E NA 92202 16.14 Test Mix # 1, E' NA 106892 18.81 Test Mix # 2, B NA 110867 19.54 Test Mix # 2, B' NA 110275 19.43 Test Mix # 2, M NA 107060 18.84 Test Mix # 2, M' NA 107748 18.97 Test Mix # 2, E NA 101906 17.91 Test Mix # 2, E NA 101906 17.91 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 99099 15.91 Test Mix # 3, M' NA 90909 15.91 Test Mix # 3, E NA 90589 15.85 Test Mix # 3, E' NA 90589 15.85 Test Mix # 4, B NA 111212 19.60 Test Mix # 4, B' NA 113974 20.10 Test Mix # 4, B' NA 113974 20.10 Test Mix # 4, M' NA 113974 20.10 <	Test Mix # 1, M	NA	94778	16.61
Test Mix # 1, E'NA10689218.81Test Mix # 2, BNA11086719.54Test Mix # 2, B'NA11027519.43Test Mix # 2, MNA10706018.84Test Mix # 2, M'NA10774818.97Test Mix # 2, ENA10190617.91Test Mix # 2, E'NA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, M'NA9090915.91Test Mix # 3, E'NA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 3, E'NA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, B'NA11397420.10Test Mix # 4, M'NA11242419.82Test Mix # 4, E'NA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, B'NA8616115.04	Test Mix # 1, M'	NA	85965	15.01
Test Mix # 2, BNA11086719.54Test Mix # 2, B'NA11027519.43Test Mix # 2, MNA10706018.84Test Mix # 2, M'NA10774818.97Test Mix # 2, ENA10190617.91Test Mix # 2, E'NA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, M'NA9090915.91Test Mix # 3, M'NA8923315.73Test Mix # 3, ENA9058915.85Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11397420.10Test Mix # 4, M'NA11397420.10Test Mix # 4, ENA11242419.82Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, B'NA8616115.04	Test Mix # 1, E	NA	92202	16.14
Test Mix # 2, B' NA 110275 19.43 Test Mix # 2, M NA 107060 18.84 Test Mix # 2, M' NA 107748 18.97 Test Mix # 2, E NA 101906 17.91 Test Mix # 2, E' NA 98293 17.25 Test Mix # 3, B NA 97602 17.13 Test Mix # 3, B' NA 97729 17.15 Test Mix # 3, M' NA 90909 15.91 Test Mix # 3, M' NA 90589 15.85 Test Mix # 3, E' NA 90589 15.85 Test Mix # 4, B NA 111212 19.60 Test Mix # 4, B' NA 113409 20.00 Test Mix # 4, B' NA 113409 20.10 Test Mix # 4, M' NA 113974 20.10 Test Mix # 4, M' NA 1107497 18.93 Test Mix # 4, E' NA 112424 19.82 Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix #	Test Mix # 1, E'			
Test Mix # 2, MNA10706018.84Test Mix # 2, M'NA10774818.97Test Mix # 2, ENA10190617.91Test Mix # 2, E'NA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA9090915.91Test Mix # 3, ENA9338316.36Test Mix # 3, ENA9058915.85Test Mix # 3, E'NA11121219.60Test Mix # 4, BNA11340920.00Test Mix # 4, B'NA11397420.10Test Mix # 4, MNA11242419.82Test Mix # 4, ENA11242419.82Test Mix # 4, ENA10014417.59Test Mix # 4, E'NA10014417.59Test Mix # 5, B'NA8616115.04	Test Mix # 2, B	NA	110867	19.54
Test Mix # 2, M'NA10774818.97Test Mix # 2, ENA10190617.91Test Mix # 2, E'NA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9058915.85Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11397420.10Test Mix # 4, M'NA11397420.10Test Mix # 4, M'NA11242419.82Test Mix # 4, ENA10014417.59Test Mix # 4, E'NA10014417.59Test Mix # 5, B'NA8616115.04	Test Mix # 2, B'	NA	110275	19.43
Test Mix # 2, ENA10190617.91Test Mix # 2, E'NA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11397420.10Test Mix # 4, M'NA11397420.10Test Mix # 4, M'NA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04		NA	107060	18.84
Test Mix # 2, E'NA9829317.25Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11397420.10Test Mix # 4, M'NA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04	Test Mix # 2, M'	NA	107748	18.97
Test Mix # 3, BNA9760217.13Test Mix # 3, B'NA9772917.15Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, B'NA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04	Test Mix # 2, E	NA	101906	-
Test Mix # 3, B'NA9772917.15Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, B'NA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04	Test Mix # 2, E'	NA	98293	
Test Mix # 3, MNA9090915.91Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, B'NA11397420.10Test Mix # 4, MNA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04	Test Mix # 3, B	NA	97602	
Test Mix # 3, M'NA8992315.73Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, B'NA11397420.10Test Mix # 4, MNA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04		NA	97729	17.15
Test Mix # 3, ENA9338316.36Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, MNA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04	Test Mix # 3, M		90909	15.91
Test Mix # 3, E'NA9058915.85Test Mix # 4, BNA11121219.60Test Mix # 4, B'NA11340920.00Test Mix # 4, MNA11397420.10Test Mix # 4, M'Na10749718.93Test Mix # 4, ENA11242419.82Test Mix # 4, E'NA10014417.59Test Mix # 5, BNA9045115.83Test Mix # 5, B'NA8616115.04	Test Mix # 3, M'	NA	89923	15.73
Test Mix # 4, B NA 111212 19.60 Test Mix # 4, B' NA 113409 20.00 Test Mix # 4, M NA 113974 20.10 Test Mix # 4, M' Na 107497 18.93 Test Mix # 4, E NA 112424 19.82 Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04				
Test Mix # 4, B' NA 113409 20.00 Test Mix # 4, M NA 113974 20.10 Test Mix # 4, M' Na 107497 18.93 Test Mix # 4, E NA 112424 19.82 Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04	Test Mix # 3, E'		90589	15.85
Test Mix # 4, M NA 113974 20.10 Test Mix # 4, M' Na 107497 18.93 Test Mix # 4, E NA 112424 19.82 Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04	Test Mix # 4, B	NA		19.60
Test Mix # 4, M' Na 107497 18.93 Test Mix # 4, E NA 112424 19.82 Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04	Test Mix # 4, B'	NA	113409	20.00
Test Mix # 4, E NA 112424 19.82 Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04			113974	20.10
Test Mix # 4, E' NA 100144 17.59 Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04	Test Mix # 4, M'	Na		18.93
Test Mix # 5, B NA 90451 15.83 Test Mix # 5, B' NA 86161 15.04	Test Mix # 4, E	NA	112424	19.82
Test Mix # 5, B' NA 86161 15.04	Test Mix # 4, E'	NA	100144	17.59
	Test Mix # 5, B			
Test Mix # 5 M NA 84031 14 66	Test Mix # 5, B'			
	Test Mix # 5, M	NA	84031	14.66
Test Mix # 5, M' NA 71194 12.33	Test Mix # 5, M'	NA	71194	12.33
Test Mix # 5, E NA 83091 14.49	Test Mix # 5, E	NA	83091	14.49
Test Mix # 5, E' NA 73311 12.71	Test Mix # 5, E'	NA	73311	12.71

•

Correlation coefficient = 0.998; NA = Not Applicable Note: B = Beginning; M = Middle; E = End; ' = Replicate sample

Chemistry Table 4 Sample Analysis Values and % Error Based on Theoretical Value (After Use- Purity for Stability)

(19)

Annex 56-C

(20)

SLI Study No. 3596.8

APPENDIX A

Statistical Analysis

RAW DATA LISTI TREATMENTS	SULTS SAMPLE)	SNO L																														
	COMB (FOR	2 0BSERVATI 0NS		16.080	16.340		17.900	19.250		18.310	18.830				15.160					15.490	17.010	17.150				_	14.110			13.500	14.100	13.840
	CONTROL (THEORECTI CAL VALUE)	1	14.800	14.800	14.800		14.800	14.800		14.800	14.800		14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800	14.800				14.800	14.800	14.800	14.800	14.800	14.800		14.800
		GROUP	1	8	n	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Annex 56-C

0F V A DF 58 59 59 P=0.0000 P=0.0000 P=0.0000 P=0.0000 0 1 0.0000 001 001	PURITY ANALYSIS FOR GLYPHOSATE (ACTIVE INGREDIENT)	V A R I A N C E PURITY BEFORE USE	SUM OF SQUARES MEAN SQUARE	35.0982 35.0982	74. 8695 1. 2909	109. 9677		2 MEANS: 14.80 16.33 S.D. : 0.000 1.607		
	SLI STUDY NO. 3596.8		SOURCE OF VARIATION DF	BETWEEN CLASSES 1	WI THIN CLASSES 58	59	19, DF= 1/ 58, P=0.0000	1 2 MEANS: 1	- -	SI CNI FI CANTAT.05 SI GNI FI CANTAT.01 SI GNI FI CANTAT.001

663

			5							
(T)			4							
I NGREDI EN			с С							
PURI TY ANALYSIS FOR GLYPHOSATE (ACTIVE INGREDIENT)			2	9	14.110	14.280	13.830	13.500	14.100	13.840
GLYPHOSATE	TY 6.)	NO. :	1	5	17.010	17.150	17.860	17.390	17.060	17.640
YSI S FOR	BEFORE USE PURITY % GLYPHOSATE (a. e. RAW DATA LISTING TREATMENTS	TEST ARTICLE MIXTURE NO.	VALUE)	4	15.160	15.610	15.530	15.510	15.770	15.490
JRI TY ANAI	BEFORE % GLYPE RAW DA TRE	ST ARTI CLE	SNO L	ი	18.190	18.310	18.830	18.330	16.740	16.260
PL		TES	OBSERVATI ONS	2	15.980	16.080	16.340	16.840	17.900	19.250
NO. 3596.8		CONTROL	(THEORECTI CAL	GROUP 1	14.800	14.800	14.800	14.800	14.800	14.800
STUDY NO.					1	2	e	4	5	9

664

SLI STUDY NO. 3596.8	PURI TY	PURITY ANALYSIS FOR GLYPHSATE (ACTIVE INGREDIENT)	GLYPHSATE	(ACTI VE]	NGREDI E	(TVI			PA	PAGE 2	
ANALYSIS	OF V A R I	ANCE	BEFORE USE PURITY	E PURITY							
SOURCE OF VARIATION DF SUM	M OF SQUARES	MEAN SQUARE	ΣΕ								
BETWEEN CLASSES 5	71.9557	14. 3911									
WI THIN CLASSES 30	14.6132	0.4871									
TOTAL 35	86. 5689										
F = 29.54, $DF=5/30$, $P=0.0000$											
GROUP: 1 2 3 0.342 0.278	4 5	6 MEANS: 14.80 17.06 17.78 15.51	l. 80 17. 06	17. 78	15.51	17. 35	17. 35 13. 94 S. D.	: 0.000	1. 280	0.000 1.280 1.024 0.200	0. 200
TUKEYS TEST (2-tailed) CROUP DF PROR T											
2 30 0.0001 7											
30 0.0000] 30 0.5015											
30 0.0013 2. 30 0.0068 5											
0.9791											
VS 6 30 0.0000 1											
VS 6 30 0.0000 1											
VS 5 30 0.0010											
VS 6 30 0.0062											
VS 6 30 0.00			I								
2 # 0.0001 3 # 0.0000											
ŧ											
5 # 0.0000											
* SI GNI FI CANT AT . 05 ** SI GNI FI CANT AT . 01											
# SI GNI FI CANT AT . 001											

(24)

œ
3596.
N0.
STUDY
SLI

AFTER USE PURITY (STABILITY) % GLYPHOSATE (a. e.) RAW DATA LISTING

TREATMENTS COMBINED RESULTS (FOR POOLED SAMPLE) 2 OBSERVATIONS		18, 840 17, 910 17, 130 17, 150 15, 910 15, 910 15, 910 16, 330 16, 330 15, 850 15, 850 15, 850 100 20, 100	18, 930 19, 820 17, 590 15, 830 15, 640 14, 604 12, 330 14, 490 12, 710
CONTROL (THEORECTI CAL VOLUME) 1	800 8800 8800 8800 8800 8800 8800 8800	14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 12,800 12,800 12,800 14,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 14,8000 14,8000 14,8000 14,8000000000000000000000000000000000000	14. 800 14. 800 11. 80
GROUP	□ 01 07 07 07 00 00 00 00 00 00 00 00 00 00	9 111 111 113 113 113 113 210 210 210 210 210 210 210 210 210 210	22 25 25 29 28 29 28 29 28

(25)

SLI STUDY NO. 3596.8 PURI A A L Y S F V A I SOURCE OF VARI A L Y S G S SOURCE OF VARI A L Y S G S S SOURCE OF VARI A L T T T S
TUDY NO. 3596.8 A N A L Y S I S E OF VARIATION D) EN CLASSES 5i N CLASSES 5i 3.95, DF= 1/ 58, P 3.95, DF= 1/ 58, P 3.95, DF= 1/ 58, O 56 3.95, DF= 1/ 58, O 57 3.95, DF= 1/ 58, O 56 3.95, DF= 1/ 58, O 56 57 57 58 58 58 50 50 50 50 50 50 50 50 50 50 50 50 50

(26)

		5	9	15.830	15.040	14.660	12.330	14.490	12.710
FABILITY) e.) VG). ::	4	ũ					19.820	
AFTER USE PURITY (STABILITY) % GLYPHOSATE (a. e.) RAW DATA LISTING TREATMENTS	TEST ARTICLE MIXTURE NO.:	3	4	17.130	17.150	15.910	15.730	16.360	15.850
FTER USE % GLYPH RAW D TR	ARTI CLE	2	ę	19.540	19.430	18.840	18.970	17.910	17.250
Α	TEST	1	8	16.670	16.640	16.610	15.010	16.140	18.810
	CONTROL THEORECTI CAL	VALUE)	GROUP 1	14.800	14.800			14.800	14.800
	Ċ	•	OBSERVATI ONS	1	2	33	4	5	9

PURITY ANALYSIS FOR GLYPHOSATE (ACTIVE INGREDIENT) S OF V A R I A N C E AFTER USE PURITY (STABILITY)	DF SUM OF SQUARES MEAN SQUARE	5 125.3327 25.0665	30 27.6537 0.9218	35 152.9865	P=0.0000	3 4 5 6 MEANS: 14.80 16.65 18.66 16.35 19.34 14.18 S.D. : 0.000 1.234 0.900 0.644	T 1 4 711 9 871 3 967 3 967 3 967 3 967 11.533 6 871 6 871 6 871 6 871 6 871 6 871 1 743 1 743 1 743 1 743 1 743 1 743 1 1743 1
	SUM OF SQI	125. 332	27.65	152. 986	0000		T 711 8839 967 598 744 872 872 872 872 872 173 173
S I	V DF	5	30	35	30, P=0.	~	
SLI STUDY NO. 3596.8 A N A L Y S	SOURCE OF VARIATION	BETWEEN CLASSES	WI THI N CLASSES	TOTAL	F = 27.19, $DF = 5/3$	GROUP: 1 0. 953 1. 369	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(28)

Annex 56-C

(29)

SLI Study No. 3596.8

APPENDIX B

SLI Personnel Responsibilities

Annex 56-C

(30)

SLI Study No. 3596.8

SLI PERSONNEL RESPONSIBILITIES

Kimberly L. Bonnette, M.S., LATG	Study Director/Director, Acute Toxicology
Dawn D. Rodabaugh, B.S.	Alternate Contact/Toxicologist
Robert C. Springborn, Ph.D.	Chairman, President and CEO
Malcolm Blair, Ph.D.	Senior Vice President, Managing Director Emeritus
Joseph C. Siglin, Ph.D., DABT	Vice President, Managing Director
Jason W. Smedley, B.S.	Assistant Toxicologist
M. Gardner Clemons, B.A.	Manager of Analytical Chemistry and Pharmacy
Delores P. Knippen	Supervisor of Pharmacy
Anita M. Bosau, RQAP-GLP	Senior Director, Compliance Assurance
Deanna M. Talerico, RQAP-GLP	Senior Supervisor of Quality Assurance
Kathy M. Gasser	Supervisor of Archives

Annex 57

Letter by Ms Rebecca L. Puskas to the United States Environmental Protection Agency, 11 November 2008

(United States Embassy in Bogotá, 2011)

۲

Seaport World Trade Center West 155 Seaport Boulevard Boston, MA 02210-2600

617 832 1000 main 617 832 7000 fax

Rebecca L. Puskas Boston Office 617 832 3039 OTA DPPTS HXDRINDO275-09 Owe: D/17/08

Via Certified Mail #7001-0320-0002-1246-3449

U.S. Environmental Protection Agency HQ FOIA Operations Staff (2822T) Ariel Rios Building 1200 Pennsylvania Avenue, NW Washington, DC 20460

Re: Freedom of Information Act Request - Office of Pesticide Programs

Dear Sir or Madam:

November 11, 2008

This is a request pursuant to the Freedom of Information Act (5 U.S.C. § 552). I am writing to request certain documents in the possession of the Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP) regarding herbicide use for the aerial eradication of illicit coca in Colombia.

Please provide the following documents¹ or other materials described below:

(1) Any and all documents referenced or otherwise relied upon in the EPA's consultations with the U.S. Department of State (DoS) in connection with DoS approval of the aerial eradication program pursuant to the Andean Counterdrug Initiative section of the Foreign Operations, Export Financing, and Related Programs Appropriations Act. These consultations include, but are not limited to: "U.S. Environmental Protection Agency Office of Pesticide Programs Details of the Consultation for Department of State: Use of Pesticide for Coca Eradication Program in Colombia, August 2002" (EPA 2002 Analysis),² "U.S. Environmental Protection Agency Office of Pesticide Programs Details of the 2003 Consultation for the Department of State: Use of Pesticide for Coca and Poppy Eradication

NOV 1 C

BOSTON | WASHINGTON | EMERGING ENTERPRISE CENTER | FOLEYHOAG.COM

B3562007.5

¹ As used in this request, the term "documents" includes, without limitation, the following: studies, reports, memoranda, decision documents, records of decision, assessments, comments, consent decrees, notes, letters, telecopier transmissions, contracts, leases, tapes (audio or video), or any other written, recorded (including on disk or other computer format) or transcribed matter, including drafts.

² Available online at: http://www.state.gov/p/inl/rls/rpt/aeicc/13237.htm

November 11, 2008 Page 2

Program in Colombia," June 2003 (EPA 2003 Analysis),³ and "Letter and Consultation Report from EPA Administrator Leavitt," November 17, 2004 (EPA 2004 Analysis).⁴

(2) Any and all documentation of EPA consultations with DoS regarding the aerial eradication program between 2004 and the present.⁵

(3) Any and all documents regarding the composition of the chemical spray mix used in the aerial eradication program.

(4) Any and all documents considering the expected or actual impacts of the spraying program on human health and livelihoods, including, but not limited to, the impacts of direct human contact with off-target spray, impacts on human water supplies, crops and domesticated animals, and the effect of the spraying program on indigenous peoples.

(5) Any and all documents considering the expected or actual impacts of the spraying program on the environment, including, but not limited to, impacts on non-target plants, waterbodies, wildlife, biodiversity, endemic or endangered species, protected areas, soil health, and ecosystem-level effects.

(6) Any and all documents considering the expected or actual impacts of the spraying program on neighboring countries, including Ecuador and Venezuela.

(7) "Department of State (DoS) Presentation, DoS Coca Eradication Program, 4/18/02."⁶

(8) "Description of Use of Glyphosate in Coca Eradication in Colombia in attachment to a letter from Secretary of State Colin Powell to Environmental Protection Agency Administrator Governor Christine Whitman."⁷

⁶ This presentation is described as one of two key sources for the EPA 2002 Analysis.

⁷ Cited in EPA 2002 Analysis, Section 1.

³ Available online at: <u>http://www.state.gov/documents/organization/27516.pdf</u>

⁴ Available online at: <u>http://www.state.gov/p/inl/rls/rpt/aeicc/44455.htm</u>

⁵ There is no documentation available online regarding EPA's consultations with DoS about the spraying program since 2004 yet it appears the consultations have continued: "In 2006, the Secretary of State determined and certified to Congress identical conditions concerning human health and environmental safety issues, including endemic species. These certifications were based on, among other information ... verbal and written consultations on the spray program with USDA and EPA." DoS 2007, Memorandum of Justification Concerning the Secretary of State's 2007 Certification of Conditions Related to the Aerial Eradication of Illicit Coca in Colombia, available online at: <u>http://www.state.gov/p/inl/rls/rpt/aeicc/111210.htm</u>.

November 11, 2008 Page 3

(9) Any and all reports, assessments and other documents of the Hazard Identification Assessment Review Committee (HIARC) regarding the human health effects of the spray mixture used in Colombia, including but not limited to, "HIARC Report for Glyphosate (TXR No. 0050428, W. Dykstra, 22-JAN-2002)."⁸

(10) Any and all documents concerning the EPA's approval under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act (FFDCA) of the inert ingredients in the glyphosate formulation used in Colombia. Without limiting the foregoing, please provide any non-exempt data submitted by the registrant for product approval under these statutes.⁹

(11) Any and all documents concerning the EPA's approval under the FIFRA and the FFDCA of the components of the adjuvant Cosmo-Flux 11F used in Colombia. Without limiting the foregoing, please provide any non-exempt data submitted by the registrant for product approval under these statutes and the letter cited in the EPA 2002 Analysis, "Letter from R.Forrest/EPA, to R.Woolfolk/DoS, 7/30/2001."¹⁰

(12) A June 28, 2002 memorandum entitled "Description of Glyphosate Use in the U.S. for Comparison to Use in Colombia for Coca Eradication from Virginia Werling and Timothy Kiely to Jay Ellenberger."¹¹

(13) A report from the Department of Narino, Municipality of El Tablon De Gomez entitled "A Study of Health Complaints Related to Aerial Eradication in Colombia" and dated September 2001. This report was commissioned by the U.S. Embassy in Bogotá, Colombia.¹²

(14) Any and all environmental fate studies relied upon to produce the environmental fate assessment in the EPA 2002 Analysis.¹³

(15) Any and all documentation of inputs to the AgDrift model used to estimate the potential spray drift of glyphosate, including, but not limited to, default inputs.¹⁴

¹⁴ EPA 2002 Analysis, Section 4.

⁸ Cited in EPA 2002 Analysis, Section 2.

⁹ EPA 2002 Analysis, Section 2.

¹⁰ EPA 2002 Analysis, Section 2.

¹¹ EPA 2002 Analysis, Section 2.

¹² EPA 2002 Analysis, Section 3.

¹³ The EPA 2002 Analysis states that: "[t]he present environmental fate assessment is based on regulatory fate studies submitted to the Agency to support the registration of glyphosate salts and their formulated pesticide products." EPA 2002 Analysis, Section 4.

November 11, 2008 Page 4

(16) Any and all video tape recordings of spraying operations.¹⁵

(17) Any and all herbicide, formulant, or adjuvant labels, including but not limited to, the label for Cosmo-Flux 411F.¹⁶

(18) Any and all acute toxicity tests on the tank mix used in the aerial eradication program, including, but not limited to, "Evaluation of 6 acute toxicity studies conducted on test material identified as Spray–Charlie. (DP Barcode: D289806, 13-MAY-2003)."¹⁷

(19) "Interagency Soil and Water Sampling Field Study Report: Glyphosate Persistence in and Effects on the Soil and Bodies of Water."¹⁸

(20) Any and all documents related to herbicide runoff simulations conducted by the EPA to evaluate the potential impacts of the spraying program.¹⁹

Please contact me immediately at 617-832-3039 or at rpuskas@foleyhoag.com if you have any questions with respect to this request. In addition, please forward responsive documents to me as they become available, rather than waiting for all responsive documents to be identified.

This letter authorizes the expenditure of up to \$1,000 in costs; please contact me if the amount will be greater.

Sincerely,

Referen 7 Askas

Rebecca L. Puskas

¹⁷ The EPA 2003 Analysis states that: "During April 18 briefing, the Department of State agreed to supply the Agency with a full battery of the six acute toxicity tests on the tank mix used in the coca aerial eradication program. That information has been received and reviewed." EPA 2003 Analysis, p. 9.

¹⁸ This document was reviewed by the Agency for the EPA 2004 Analysis.

¹⁵ The EPA 2002 Analysis states that: "[b]ased on video of spraying operations with multiple aircraft, the number of spray lines used in modeling was 4." EPA 2002 Analysis, Section 4, Table 1.

¹⁶ The EPA 2002 Analysis suggests that these labels were evaluated by the Agency: "[t]here is some inconsistency in the description of Cosmo-Flux in the two available labels, in Spanish and English." EPA 2002 Analysis, Section 4.

¹⁹ The EPA 2004 Analysis states that: "Using runoff simulations from Agency exposure models PRZM and EXAMS, the concentration that may result from direct application of 3.75 lb acid eq/acre of glyphosate to a 1-acre, 6-foot deep pond is 230 ppb...."

Annex 58

EMBASSY OF THE UNITED STATES OF AMERICA, LIST OF AERIAL ERADICATION VERIFICATION MISSION SINCE 1997

Appendix: Implementation of the verification protocol January – July 1998, carried out October 18-23, 1998

(United States Embassy in Bogotá, 2011)

Embassy of the United States of America

AERIAL ERADICATION MISSION REPORTS SINCE 1997

- 1. October 27-November 6, 1997; November 16-21, 1997: "Trip Report Colombia Coca Eradication"
- 2. October 19-23, 1998: "Implementation of the Verification Protocol: January July, 1998"
- 3. October 19-23, 1999: "First Implementation of the Verification Protocol for the Period January July 1999"
- 4. December 3-8, 1999: "Second Implementation of the Verification Protocol for the Period July September 1999"
- 5. September 11-22, 2000: "Verification Report, Colombia, September 2000"
- 6. December 9-20, 2002: "2002 Colombia Coca Eradication Report"
- 7. 2003 10th National Coca Crop Verification Mission, 2003
- 2004 11th Verification Mission for Efficiency and other Comments on Illicit Coca Crop Spraying Operations during 2004
- 9. 2005 12th Mission for Efficiency Verification and other Comments on Illicit Coca Crop Spraying Operations during First Semester of 2005
- 10.2006 13th Mission for Verification of Efficacy and Other Observations on Illicit Coca Crop Spraying Operations (October 2005 to February 2006)
- 11.2006 14th Mission for Verification of Efficacy and Other Observations on Illicit Coca Crop Spraying Operations (March – August 2006)
- 12.2007 15th Verification Mission on Efficacy and Other Observations on Illicit Coca Crop Spraying Operations (September 2006 – February 2007)
- 13.2007 16th Verification Mission on Efficacy and Other Observations on Illicit Coca Crop Spraying Operations (March –August 2007)
- 14.2008 Technical Report 17th Spraying Operation Verification Mission September 2007 – February 2008
- 15.2008 Technical Report 18th Verification Mission of Spraying Operations done Between March and August 2008
- 16.2009 Technical Report 19th Verification Mission of Spraying Operations done Between September 2008 and February 2009
- 17.2009 Technical Report 20th Spraying Operation Verification Mission March – August 2009
- 18.2010 Technical Report 21th Spraying Operation Effectiveness Verification Mission (Period: September 2009 – February 2010)

Santafé de Bogotá, D.C. November 13, 1998

Sprayed: Jon - July 1998

Mr. Luis Moreno Director N.A.S. US Embassy

Dear Mr. Moreno

Please find enclosed the report "Implementation of the Verification Protocol: January – July, 1998", carried out October 19 – 23, 1998 for coca plantations.

Thank you for your attention

Cordially,

Luis Eduardo Parra Rodriguez Environmental Auditor – Illegal Crop Eradication

Enclosures

CONTENTS

- 1. INTRODUCTION
- 2. BACKGROUND AND JUSTIFICATION
- a. Illegal Crop Eradication Verification 1998
- SPOT satellite images
- 3. ACTIVITIES PERFORMED
- METHODOLOGY
- 4.1 SELECTION AND REPRESENTATIVENESS OF THE SAMPLE TO BE VERIFIED
- a. Spraying period to be verified
- b. Areas to be verified
- c. Sample selection
- 4.2 EFFICACY OF ERADICATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 5.1 ABOUT COCA ERADICATION
- 5.1.1 Guaviare Meta nucleus
- 5.1.2. Caquetá Putumayo nucleus
- 5.2 ABOUT ILLEGAL COCA PLANTATIONS
- QUALITATIVE ENVIRONMENTAL EVALUATION OF SPRAYING AND ILLEGAL CROPS
- 6.1 ENVIRONMENTAL IMPACT OF AERIAL SPRAYING
- 6.2 ENVIRONMENTAL IMPACT OF ILLEGAL CROPS

LIST OF TABLES

- TABLE 1: NATIONAL CONSOLIDATED FIGURES FOR THE ERADICATION OF ILLEGAL COCA PLANTATIONS 1998
- TABLE 2: SAMPLE SPRAYED AREA AND SAMPLE SIZE. JANUARY JULY, 1998
- TABLE 3:SITES FINALLY SELECTED FOR VERIFICATION. JANUARY JULY1998: GUAVIARE META NUCLEUS.
- TABLE 4:SITES' FINALLY SELECTED FOR VERIFICATION. JANUARY JULY1998: CAQUETÁ PUTUMAYO
- TABLE 5: EVALUATION OF AERIAL SPRAYING EFFICACY IN ILLEGAL COCA PLANTATIONS: JANUARY – JULY 1998; GUAVIARE – META NUCLEUS.
- TABLE 6: EVALUATION OF AERIAL SPRAYING EFFICACY IN ILLEGAL COCA PLANTATIONS: JANUARY – JULY 1998; CAQUETÁ - PUTUMAYO NUCLEUS.

Annex 58

LIST OF APPENDICES

APPENDIX 1: SITES FINALLY SELECTED FOR VERIFICATION: JANUARY – JULY 1998 \Rightarrow GUAVIARE – META NUCLEUS \Rightarrow CAQUETÁ – PUTUMAYO NUCLEUS

APPENDIX 2: VERIFICATION PROGRAM FOR THE ERADICATION OF ILLEGAL CROPS – INITIAL SAMPLE SELECTION \Rightarrow GUAVIARE – META NUCLEUS \Rightarrow CAQUETÁ – PUTUMAYO NUCLEUS

> "SATLOC" FLIGHT RECORDS FOR THE INITIAL SAMPLE. JANUARY – JULY 1998

APPENDIX 3: ON-SITE VERIFICATION OF SELECTED AND SPRAYED COCA SITES.

INTRODUCTION

The document being submitted to the National Narcotics Directorate – NND (Dirección Nacional de Estupefacientes – D.N.E), Narcotics Police Directorate – N.P.D. (Dirección Policía Antinarcóticos – DIRAN) and the Narcotics Affairs Section – N.A.S. of the US Embassy, represents the implementation of the verification protocol¹ signed by the governments of Colombia and the United States on the efficacy of area spraying using Glyfosate (fumigation) and the respective percentage of effective eradication of illegal coca plantations in the departments of Meta, Guaviare, Caquetá and Putumayo.

This report is based on a random sampling of the sites and/or lots sprayed between January and July 1998 as well as the respective aerial and in situ inspections. This report includes a technical memoir and a detailed photographic record to serve as illustration and evidence, as well as other attachments.

In general terms and according to the in situ verifications carried out by the three observers² the efficacy of the spraying program and, therefore, of the effective coca eradication for the above mentioned period is $91.23\% \pm 12.64$. This figure is obtained after daily processing and comparing the observations by the evaluation committee in the presence of all evaluators. Based on this effective eradication index it is possible to say that out of the 49,527.47 hectares that were sprayed, close to 45,184 hectares of coca plantations are completely dead and out of the production of cocaine hydrochlorate. Of the other 4,343.56 ha, most are abandoned and others are being cared for in small remaining lots or areas by some people (relatives or groups of people?) but with no indication of intent to continue with large areas.

It's important to note that only on two occasions was there an area with overspray detected. These can be considered isolated events that do not in any way affect the effective eradication percentage. It is also possible to adjust the final eradication figure for 1998 after analysis of the doublespray that might take place, including the last verification for August – December 1998. This will likely take place during the first half of March 1999.

Plante and the Ministry of the Environment were also invited to this process but these institutions were not able to attend for various reasons. The verification committee included interinstitutional and international participation from the following people and organizations.

¹ This protocol was signed by the Ministry of Defense and the United States Embassy on November 19, 1995 based on the document *Joint Verification Procedures for Illegal Coca Plantations* prepared in October, 1996 and agreed to by DNE, DIRAN and N.A.S..

² The three (3) evaluators were Drs. Ch, Helling and R. Collins for N.A.S.-USA and Dr. Luis Eduardo Parra R. for Colombia. The other participants from various institutions acted as observers.

NAME	POSITION	ORGANIZATION
Doctor Fernando Puerta	Consultant – Director	D.N.E.
Major Luis E. Salamanca M.	Director – Illegal crop eradication division	DIRAN
Major Leonidas Molina T.	Narcotics Director – Eastern area	DIRAN
Lieutenant James Roa	Reconnaissance Director	DIRAN
Major Gustavo Ramirez	Lead Pilot – Helicopter Squad	DIRAN
Mr. David Becker	Assistant Director	N.A.S.
Mr. Mike Kenna	Aviation Consultant	N.A.S.
Mr. Lowell Neese	Aviation Consultant	DYNCORP - N.A.S.
Mr. Nathaniel Christie	Consultant - Director	N.A.S.
Mr. Julio Dennis	Aviation Consultant	DYNCORP - N.A.S.
Dr. Charles Helling	Scientific Weed Lab Director	USDA - ARS ³
Doctor Ron Collins	Herbicide Scientist	USDA – ARS
Dr. Jayson Page	Interpreter – Analyst	CNC - Washington ⁴
Dr. Anne Mogloon	Interpreter – Analyst	CNC –Washington
Dr. Luis E. Parra R.	Director	Environmental Auditor – Illegal crop Eradication

Finally, the invaluable aid provided by Colonel Jose Leonardo Gallego, Director of the Narcotics Police must be praised. He was always ready to ensure the aerial, logistic and detection resources for the proper performance of this important part of the Program. Also the efforts of the Air Service and DIRAN's operations group, and the international cooperation represented by N.A.S. and INL under the direction of Mr. Luis Moreno.

 ³ USDA – ARS = U. S. Department of Agriculture Assets and Resources
 ⁴ CNC = Crime and Narcotics Center, office that specializes in image and photographic analysis and interpretation.

2. BACKGROUND AND JUSTIFICATION

From the onset, the program has had its own verifications practices an procedures. These have been improved and complemented over time to arrive at the current procedure. Past experience and efforts are very important because they made it possible to build the current model and practices.

Verification has been aimed at general and detailed air reconnaissance, and on site reconnaissance activities. This procedure is a continuation of similar activities carried out from 1995 through 1997, except that now there are leading edge technological resources such as optical and radar satellite images, and differential G.P.S. and others.

The current procedure is justified by the need to have an agreed mechanism for verification and quantification of the results obtained from fumigation activities carried out in 1998 using Glyfosate spraying, bearing in mind the fact that the statistics about the efficacy of eradication in previous years (1995, 1996, 1997) showed discrepancies of varying orders and magnitudes. These were the reasons why the United States and Colombian Governments set up the Protocol mentioned above.

For this verification, Environmental Audit, in agreement with N.A.S. and DIRAN, prepared the following documents.

- Program for verification of Illegal crop eradication 1998 This document was delivered to the interested institutions, including the Ministry of the Environment, on October 6, 1998. The document established:
 - Areas for reconnaissance in the Guaviare Meta (Orinoco and Amazon River Basins) and Caquetá – Putumayo (Amazon River Basin) nuclei.
 - Selection of samples for verification: size, space, representation and reliability. The sites were selected by analyzing SATLOC records, satellite images, etc.
 - Criteria to estimate the effectiveness of eradication in terms of methodology, process, on site verification, overspray, etc.
 - · Participants in the verification process
 - Evaluation of results.

b. SPOT⁵ Satellite Images

This major technological resource was used for the first time for verification and became an important planning and implementation tool.

⁵ These optical SPOT III and ERS-2 radar images are included in 87 spot views, on a 1:25,000 scale, and are an analog and digital representation of the main nuclei in Guaviare – Meta, such as San Jose, El Retorno, Calamar, Miraflores, Tomachipan and Mapiripan. These spot views totally eliminate subjectivity.

The following products were selected on the basis of these SPOT views delivered by SPOT Image to DIRAN.

- Spot views of existing nuclei and regions
- Cuts and work sheets for each selected lot
- SATLOC records of the sample lots and sites and
- Evaluation form to be filled out for each selected site

With these things in mind, the verification procedures is justified because this method makes it possible to determine, with a very small error margin, the efficacy of the eradication program. This is because the program makes technical and scientific use of existing technological resources including optical satellite images (SPOT and ERS-2 Radar), SATLOC records of aerial spraying, the Environmental Audit data base by region and municipality, DIRAN's Illica records, transportation and security helicopters, SATLOC- and differential GPS-equipped airplanes.

ACTIVITIES

This verification required the following tasks:

DATE	ACTIVITY	REGION AND/OR MUNICIPALITY	COMMENTS
01-10-98/06-10-98	Preparation of the program for verification of illegal crop eradication for 1998	Meta, Guaviare, Caquetá and Putumayo	Included delivering documents to all institutions, interinstitutional discussion and adjustment. Activities carried out by Environmental Audit
07-10-98 / 17-10-98	Selection and determination of weighted sample for verification	Meta, Guaviare, Caquetá and Putumayo	Selection of spot views, preparation of image clippings and worksheets, selection of SATLOC records and delivery of documents. Activity carried out by Environmental Audit with cooperation from DIRAN and DYNCORP
16, 17-10-98	General aerial reconnaissance to major nuclei to be verified	Meta, Guaviare, Caquetá and Putumayo	Activity carried out together by DIRAN and Environmental Audit. Notes about safe routes and accessibility. Logistics.
19-10-98/23-10-98	On site verifications	Meta, Guaviare, Caquetá and Putumayo	Detailed aerial and ground (on site) verification carrie⊡d out by the committee

For security reasons intelligence, operations, operating groups, movements, etc. aimed at ensuring the safety of the verification committee and other participants are not included.

METHODOLOGY

Verification was carried out within the framework of the verification protocol and using as a basis the methodology proposed in the preliminary document. After the committee was established, the methodology was submitted to Environmental Audit, adjusted by all members of the committee, and defined by agreement among the parties.

4.1 SELECTION AND REPRESENTATION OF THE SAMPLE

The following criteria were used to determine this important issue.

a. Fumigation period to be verified

Verification was made of the sprayed illegal crops sprayed from January through July 1998. The area sprayed during this period in the departments of Guaviare, Meta, Vichada, Vaupés, Caquetá and Putumayo was 49,527.47 ha out of a total of 55,615 ha sprayed to October 31 1998, which represent 89.05% of the total sprayed to date.

b. Area to be verified

The verification program will be applied to the illegal coca crops sprayed between January and July 1998. In considering the logistics and geographic distribution aspects of the most important nuclei with illegal coca crops for verification, the nuclei were divided into two (2) major regions.

- Guaviare Meta nucleus. This corresponds to the Amazon and Orinoco biomes
- Caquetá Putumayo nucleus. This corresponds to the Amazon biome

The nuclei of illegal coca plantations located in the departments of Vichada and Vaupés were excluded from this verification because the sprayed areas are very small compared to the national total (0.59% and 0.704%). This means that the universe of sprayed areas to be verified represented actually 98.7% of the total spraying performed between January and July 1998. Table 1 shows a summary of the fumigations and their detailed participation.

c. Sample selection

Establishing a reliable and representative sample is the first step in achieving objective and credible results from verification. From the start it was decided that:

- The size of the sample should be at least 10% of the total area sprayed from January through July 1998.
- A statistical population distributed by region (municipality) would be used to select the sample, and its percentage weight compared to the total area sprayed in the country. The percentage weight for the region by month was also determined, and
- On the basis of these two (2) criteria, the days with the largest area sprayed for each month. Using these representative sample areas

TO A DIST AND A DIST		ACCUMUNTED A	IAAI		1 IOOVE	- DOIL	1111		T N III	INFORTO TRADUCTO
		Total (ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	SPRAYED AREA
	Calamar	754.90	100.0	317.2	157.0		116.8		64.0	1.52
	El Retorno	2813.55		1073.0	600.3		481.9	83.8	574.6	5.68
GUAVIARE	Miraflores	18854.28	6196.8	4336.4	1493.1	1493.3	2844.4	855.2	1635.1	38.07
	San Jose del Guaviare	4771.06	961.5	1619.6			193.3	49.1f	94.9	9.63
	Subtotal	27193.79	7253.3	7346.1		1804.7	3636.4	988.1	2368.5	54.91
	Mapiripan	1899.56		833.3	695.1	191.3			269.9	3.84
	Puerto Rico	2439.75		492.2	389.7		105.9	98.2		4.93
META	Vista Hermosa	425.37			100.8	216.7		107.9		0.86
	Subtotal	4764.68	1353.8	1326.4	1095.6	408.0	105.9	206.1	269.9	9.62
	Albania	424.65	260.9						163.8	0.86
	Cartagena del Chairá	4140.47	243.4			2466.3	1124.9	176.4	129.6	8.36
CAQUETÁ	Cunillo	739.89	345.5						394.4	1.49
	Milan	1966.11	713.9	66.3			533.3	235.7	416.9	3.97
	Montañita	61.0	61.0							0.12
	Puerto Rico	666.08					461.1		205.0	1.34
	Solano	2092.87	363.7	154.2		456.6	513.5	275.5	329.4	4.23
	Solita	2714.46	170.9	200.0			642.0	577.9	923.7	5.48
	Valparaiso	1381.22	428.4				336.0		616.8	2.79
	Subtotal	14186.75	2587.6	420.5	0.0	922.9	3810.7	1265.5	3179.6	287.6
PUTUMAYO	Puerto Guzmán	2736.72	126.1	0.0	0.0	219.1	746.9	1053.9	590.7	5.53
	Subtotal	2736.72	126.1	0.0	0.0	219.1	746.9	1053.9	590.7	6.5
VICHADA	Siare Guajibos	296.70		296.7						0.60
	Subtotal	296.70								
VAUPÉS	Carurú	348.83		68.9			279.9			0.70
	Subtotal	348.83		68.9			279.9	0.0	0.0	0.7
	TOTAL COUNTRY	49527.47	11325.7	9457.7	4887.2	5354.7	8579.8	3513.6	6408.8	100.0
EDCENT OF	DEDCENT OF MONTHI V APEA SDBAVED	C	79 66	10 10	0 87	10 37	17 37	7 00	10 01	

TABLE 1 CONSOLIDATED NATIONAL TOTAL FOR THE ERADICATION OF ILLEGAL COCA PLANTATIONS

Data current as of July 31 1998

Sources: Narcotics Police, SATLOC/PATHCOR activity report and daily operation support DYNCORP, Environmental audit Data Base

It was therefore decided to adopt a totally random sample of some of the lots that made up the initial sample of 10% or more, as shown in Table 2, using the following criteria:

- Final selection of the lots to be sampled was made preferentially by Dr. Helling and Collins from USDA-ARS.
- For the Guaviare nucleus it was agreed that, since SPOT satellite images were available, these would be used to superimpose the SATLOC records for the fumigation flights performed from January through July 1998.
- Each lot selected in Guaviare had a graphic record of the Lot, the clipping and the lot itself (seen Appendix 1), in addition to its SATLOC records.
- For the Meta and Caquetá-Putumayo nuclei, there being no satellite images, the sample lots were selected only on the basis of the SATLOC records from the initial sample (see Appendix 1); and
- Under these conditions, the experts agreed that the sample that was finally selected is **representative and reliable**. Therefore, the results are applicable to the totality of coca fumigation activity in terms of efficacy and effective eradication of these illegal crops during the period under consideration. As additional information, Appendix 2 shows the records for the initial sample and the respective flights or missions.

4.2 EFFICACY OF ERADICATION

Determining the area that has been effectively eradicated requires the use of agronomic observation techniques (physiological and toxicological) through objective criteria and the application of expertise in evaluating the damage that destroy or disable illegal coca plantation for the production of the drug (cocaine hydrochlorate).

Table 2

Determining the effective death of the illegal coca plantations sprayed with Glyfosate requires an evaluation of the following specific issues:

 Percentage death or control of the sprayed coca by rating or evaluation of the aircraft pass. (Pass is the effective coverage of the spray). Since the main spraying method uses parallel lines that define the pass of the aircraft, this is the best variable for rating the fumigation effort.

This issue became key to determine the efficacy of the program and so it was agreed with the specialists from Washington, Drs. Helling, Collins and Page. This issue was rated using two (2) methods: detailed helicopter flights over the passes and over the lot itself, and using the evaluation of death of ten plants in three (3) different locations in the same lot where a landing or on site verification took place. This was done using a field questionnaire (Appendix 3).

• The SATLOC records of the flights or missions for the selected days were studied. Lots having the passes with greatest sprayed area or the nuclei with the largest number of adjoining passes were selected.

However, during the joint meeting with the American experts from USDA-ARS and CNC, it was decided that, verifying a sample of that size, even using a combined detailed aerial and ground reconnaissance (landing on some selected sites), in addition to being ambitious was not possible considering the hazardous conditions of public order (security) and the time available for the task. TABLE. 2 SAMPLES OF COCA AREAS SPRAYED AND PERCENT SAMPLED

JANUARY - JULY 1998

In order to make this a systematic rating⁶, a table with the following characteristics or scales was used:

SCORE	EFFECTIVE DEATH RATE (%)
1	0 –50
2	. 50 – 75
3	75 – 90
4	>90

The issued to be rated, slightly more subjective but important nonetheless, is the lot or nucleus. One of the evaluators, Dr. Collins, preferred not to this because he considered too subjective and lacked sufficient methods for its application. Dr. Helling rated the nuclei or lots only for Caquetá and Putumayo.

Tables 3 and 4 show the lots that were ultimately sampled in the Guaviare-Meta and Caquetá-Putumayo nuclei respectively. Tables 5 and 6 show the quantitative results of evaluating the efficacy of spraying to determine the amount of coca eradicated and/or killed. In general, for January – July 1998, the national figure for the death of spayed coca plants is $91.23\% \pm 12.64\%$, not including any adjustments that could result from the double spray or overlap in the fumigation lines.

⁶ This table was applied as of the second day of verification, i.e., in Miraflores, Caquetá and Putumayo and produced good results

PLOTS FINALLY SELECTED FOR VERIFICATION JANUARY - JULY 1998 GUAVIARE -META NUCLEUS

Puerto Rico - Meta Puerto Rico - Meta El Retorno - Guaviare El Retorno - Guaviare Miraflores - Guaviare	affor Rico – Meta Jerto Rico – Meta Jerto Rico - Meta Rico - Meta Ritores - Guaviare aflores - Guaviare	aftorno - Guaviare tetorno - Guaviare tetorno - Guaviare aflores - Guaviare - Guaviare	Actorno - Guaviare Retorno - Guaviare aflores - Guaviare	Retormo - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare Aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare	aflores - Guaviare aflores - Guaviare aflores - Guaviare	affores - Guaviare	aflores - Guaviare aflores - Guaviare	aflores - Guaviare			Miraflores - Guaviare	Miraflores - Guaviare	
Puerto F Puerto F El Retorni El Retorni Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Puerto F Puerto F Bl Retorno Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Puento r El Retorme Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	El Retorne Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	El Retorna Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores Miraflores	Miraflores Miraflores Miraflores	Miraflores	Miraflores	INITATIOLES		Aliza Gazara	INITATIOLES	Miraflores	Miraflores	
20.00 14.00 14.30 8.21 39.50 16.20 31.00	20.00 14.00 8.21 39.50 16.20 31.00 31.00	14.30 8.21 39.50 16.20 31.00 31.00	8.21 39.50 16.20 31.00 31.00	8.21 39.50 16.20 31.00 12.74	39.50 16.20 31.00 12.74	39.50 16.20 31.00 12.74	16.20 31.00 12.74	16.20 31.00 12.74	31.00 12.74	31.00 12.74	12.74		23.07	13.25	15.00	16.04	5.39		15.49	15.66	12.30	9 60	0.00	CC UV	77.04	6.83	51.57	410.09
W 73°24.2483 73°24.2483 72°27.1500' 72°26.6666' 72°26.6666' 72°03.3334' 72°00.3834' 71°59.7501' 71°59.7835' 71°56.6165'	73°24.2483 73°23.2855 72°27.1500 72°26.6666 72°26.3334 72°03.3334 72°00.3834 72°00.3834 71°59.7835 71°56.6166	72°27.1500 72°26.6666' 72°03.3334' 72°02.7501' 72°00.3834' 71°59.7835' 71°59.7835'	72°02.56666 72°03.3334 72°02.7501 72°00.3834 71°59.7835 71°56.5165	72°26.6666 72°03.3334' 72°02.7501' 72°00.3834' 71°59.7835' 71°56.6165'	72°03.3334' 72°02.7501' 72°00.3834' 71°59.7835' 71°56.6165'	72°03.3334' 72°02.7501' 72°00.3834' 71°59.7835' 71°56.6166'	72°02.7501' 72°00.3834' 71°59.7835' 71°56.6166'	72°02.7501' 72°00.3834' 71°59.7835' 71°56.6166'	72°00.3834' 71°59.7835' 71°56.6166'	72°00.3834' 71°59.7835' 71°56.6166'	71°59.7835	1.9919.96.17		/1~53.0000	71°52.8501'	71°50.8501'	71°51.7501'		71°56.2167	72"04.0166	72°03.6668'	72005 5834	100000 11	72001 0166'	2010-10-11	71°59.7335	71°59.7335'	
N 03*00.0583' 03*00.3619' 02*11.8166' 02*11.1667' 01*38.2500' 01*33.1000' 01*33.2667' 01*33.1166'	03°00.0583' 03°00.3619' 02°11.1667' 02°11.1667' 01°38.2500' 01°33.1000' 01°33.2667' 01°33.1166'	02°11.8166 02°11.1667 01°38.2500 01°33.1000 01°33.2667 01°33.2667	02°11.1667' 01°38.2500' 01°33.1000' 01°33.2667' 01°33.2667'	02°11.1667' 01°38.2500' 01°33.1000' 01°33.2667' 01°33.1166'	01°38.2500' 01°33.1000' 01°33.2667' 01°35.1166'	01°38.2500' 01°33.1000' 01°33.2667' 01°35.1166'	01°33.1000' 01°33.2667' 01°35.1166'	01°33.1000' 01°33.2667' 01°35.1166'	01°33.2667' 01°35.1166'	01°33.2667	01~35.1166	10000 00010	01020.000	0002720-10	01°29.3500'	01°27.2334'	01°23.2000'		01°26.5334	01~1/.3834	01°16.7501	01°15 1333'	2000-00-00	01º14 4667'		01°10.8335'	01°10.8335'	
A3 D2						BC C A3	5 2 E	B 4 C3	84 B1	5 E	2	cú	200	3	A4	B4	4				50	B2		C4			D1	
112 112 190 190 264 264 265 265 265 265														Т			283		202		200	300		300	_	301	301	A
1(10) 2(11) 2(11) 5(1) 5(1) 5(1) 5(1) 5(1) 5(1) 5(1) 5(1)			AND DECK AND ADDRESS OF	and the second s		5(1) 6(2) 7(3) 8(4) 9(5)	6(2) 7(3) 8(4) 9(5)	6(2) 7(3) 8(4) 9(5)	7(3) 8(4) 9(5)	8(4) 9(5)	9(5) 9(5)	10/6/		10/01	(/)11	12(8)	13(9)	101111	14(10)	(11)01	10(17)	17(13)		18(14)		19(15)	20(16)	TOTAL SAMPLE AREA
2666 2666 108 177 2555 177 2859 2859 285 285 285	266 266 266 1108 255 255 255 255 255 285 285 285 285 28	108 1100 2555 177 254 254 258 285 285 285 285 285	100 2555 2555 2555 2554 2554 285 285 285	108 2555 177 177 2889 2889 2855 285	100 2555 177 254 285 285 285 285	255 252 177 254 177 285 285 285 285	177 254 177 285 285	254 177 289 285	177 285 285 285	285 285	285	100	246	001	100	111	133	310	212		242	245	242	269	154	218		TOTAL
20/10/96 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/96 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98	20/10/98 20/10/98 20/10/98	20/10/98		20/10/98	0000000	06/01/07	00/01/02	86/01/0Z	0/00		00/01	06/01	21/10/98		21/10/98			0/98	
26/01/98 26/01/98 05/07/98 13/07/98 13/07/98 05/07/98 13/07/98 05/07/98 09/01/98 09/01/98 09/01/98	26/01/98 26/01/98 05/07/98 05/07/98 05/07/98 13/07/98 13/07/98 13/07/98 13/07/98 27/04/98 27/04/98 08/01/98 05/01/98 09/01/98	05/07/98 13/07/98 05/07/98 13/07/98 08/02/98 11/02/98 27/04/98 27/04/98 09/01/98 05/01/98 05/01/98	13/07/98 05/07/98 13/07/98 05/07/98 05/07/98 27/04/98 27/04/98 09/01/98 05/01/98 09/01/98	05/07/98 13/07/98 08/02/98 11/02/98 27/04/98 09/01/98 05/01/98 05/01/98 09/01/98	13/07/98 08/02/98 11/02/98 09/02/98 05/01/98 05/01/98 09/01/98 09/01/98	08/02/98 11/02/98 27/04/98 09/02/98 27/04/98 05/01/98 05/01/98 09/01/98	27/04/98 09/02/98 27/04/98 05/01/98 09/01/98 09/01/98	09/02/98 27/04/98 05/01/98 09/01/98 09/01/98	2//04/98 05/01/98 09/01/98 09/01/98	09/01/98 09/01/98	09/01/98		17/02/98	04106100	04/00/20	10100100	08/02/08	20/03/08	19/02/98	10/02/08	22/02/98	19/02/98	22/02/98	26/01/98	26/05/98	18/03/98	18/03/98	

Annex 58

- N 0 4 10

Plot number is the sequence established in the program. Cut is a square on the plot There are no SPOT images for lots 1 and 2 in plot 112 so the coordinates were obtained from SATLOC. Lot 2 could not be verified due to hostile fire from armed groups on two different occasions Coordinates for lots 3 through 20 are for the center of the lot converted to SATLOC system for greater precision in the field. However. Illico presents them in the sexagesimal system and the Lot are is precisely measured on the SPOT image. The number in parenthesis is the order assigned to the lot by the American inspectors in the field.

TABLE 4

LOTS FINALLY SELECTED FOR VERIFICATION JANUARY – JULY 1998 CAQUETÁ – PUTUMAYO NUCLEUS

DATE		DAYS		-	SATLOC C	SATLOC COORDINATES		
SPRAYED	DATE VERIFIED	SPRAYED	LOT NO.	PLOT			LOT AREA	LOCATION
26/01/98	23/10/98	271	1(1)	61	01°03.9092'	76° 03,3823'	12	Curilla – Caquetá
05/06/98	23/10/98	141	2(2)	73	00° 53,8200'	75° 58,8000	10	Puerto Guzmán - Putumavo
05/06/98	23/10/98	141	3(3)	73	00° 56, 1922'	75° 56, 1678'	15	Puerto Guzmán - Putumavo
29/01/98	23/10/98	268	4(4)	73	00°55.1109'	75°57.5903	20	Puerto Guzmán - Putumavo
23/05/98	23/10/98	154	5(5)	73	00°54.2000'	75°54.3200'	25	Puerto Guzmán - Putumavo
02/05/98	23/10/98	175	6(6)	62	010°00.7136'	75°48.5959'	10	Solita – Caquetá
02/07/98	23/10/98	114	7(7)	62	01° 03,4626'	75°44,5799'	20	Valparaiso – Caquetá
02/05/98	23/10/98	175	8(8)	74	00°56,7700'	75°43,7072'	35	Solita – Caquetá
27/04/98	23/10/98	180	9(13)	137	00°29.6424'	74°14.3274'	30	Cartagena del Chairá –
								Caquetá
24/04/98	23/10/98	183	10(14)	119	00° 34,6866'	74°15,4479'	12	Cartagena del Chairá -
								Caquetá
18/04/98	23/10/98	191	11(15)	116	00°37,0179'	74°21,2587'	10	Cartagena del Chairá -
								Caquetá
15/04/98	21/10/98	192	12(16)	118	00°39,1007'	74°27.9887'	40	Cartagena del Chairá -
								Caquetá
	TOTAL AREA OF SA	F SAMPLE					239	

Number in parenthesis represents lot order assigned by the American inspectors Drs. Collins, Helling and Page selected a sample of 20 lots from the initial sample taken from the SATLOC records for the southwest (SW) and southeast (SE) regions in the Larandia base and a total of 12 lots were checked ų. ė.

Lot area was estimated o within ± 2 ha

122	
ŝ	
ш	
m	
\triangleleft	
F	

EVALUATION OF THE EFFICACY OF AERIAL SPRAYING IN ILLEGAL COCA PLANTATIONS **GUAVIARE - META NUCLEUS**

ш.	Ľ	u.	PLOT 198					PLOT 2	254					PLOT 265	265						
R-D2		R-D2		4		R-A3	-	R-C3		R-C4		RB-1		R-C2		R-D3		R-A4		R-B4	Ŗ
NO. %	NO.	NO.			Z	.ON	1 %	NO.	%	zö	%	Q	%	Q	%	0N	%	NO	%	NO	%
- 06	- <u>-</u> 60	- 60	66		4		95 4		95	2	50	4	95	6	82.5	e	82.5	4	95	33	82
- 95	95 - 95	•	95		3	-		4	95	4	95	4	95	4	95	3	82.5	3	82.5	4	96
-	100 - 100	-	100	0	4	0,	95 4	4	100	4	100	4	95	4	100	4	100	3	95	4	96
.0 - 95.0	95.0 - 95.0	1	95.0	0	•	0,	90.8		96.7		81.7		85		92.5		88.3		90.6	1	6
. 5.0	5.0 - 5.0	1	5.0	0	1		7.2		2.9		27.5		0.0		9.0		10.1		7.2		7.2

Notes: 1.

No. value given to the evaluation of the aircraft pass, expressed according to the following table - % effective death (%) (Scale of values)

SCORE %	EFFECTIVE	DEATH	0-50	50-75	75-90	00<
S			-	2	3	A

- When the inspector rated using only a numeric value (No.) the percent rating (%) was taken as the average value.....Drs. Helling and Collins gave their % rating for aircraft pass in plot 190. Lots 3 and 4 were not rated numerically because their was on-site verification N
 - When the inspector rates spraying efficacy at 100% it means that the coca plants are completely dead and the lot.... 0.4.0.
- Plot: A 10 X 10 mile square (10 X 10 geographic minutes) R-A1, R-C3, C-Cn. Cut: squares that make up a plot, equivalent to 1/16 of the plot Table 1 also shows the number, location of the lots or site, according to plot and cut number

SITE 12	2	%	001	001		82.5		001	DOI.		94.2		10.1
LIS	5	QN		t		ო			4		,		
8 3		%	001	3		95		100	20		98.3		5
SITER	5	0N		t		4		-	t		,		1
F 7		%	EO.	3		95		0E	20	000	80.0		26.0
SITF 7	5	0N	c	1		4			t .		,		
SITE 6		%	30	3	1	с _Б		85	3	0.01	0.0/		35.0
SIT	0.1	QN				4		¢	, ,		r		1
SITE 5	10	%	06)	LC	C A		95	2	000	80.0		2.9
SIT	VIA	NC	4			4		4					I
SITE 4	0/	%	06		40	a0		100	2	02.0	0.00	-	5.0
SIT	CIN	NC	4			t		4			ı		ı
SITE 3	70	0/	90		OF	95		100		05.0	0.00	-	D.C
SIT	VID	DN	4			r		4	6	•			1
SITE 2	0/2	%	80		87 E	07.70		95		85.8		0	α.C
SIT	CN		ო		5	>		4		,			ı
SITE 1	0/0	0/	95		0F	3		95		95.0	2	0	0.0
	CN		4		A	r		4					•
EVALUATION			CHARLES	HELLING	RON	COLLINS	L	LUIS E.	PARRA	ARITHMETIC	MEAN	CONCINCTO	DEVIATION

EVALUATION OF EFFICACY OF AERIAL SPRAYING IN ILLEGAL COCA PLANTATIONS CAQUETA - PUTUMAYO NUCLEUS

TABLE 6

Notes: 1.

No. value given to the evaluation of the aircraft pass, expressed according to the following table - % effective death (%) (Scale of values) % FEFECTIVE DEATU SCORF

0-50	50-75	75-90	>90
1	2	3	4

When the inspector rates using only a numeric value (No.) the percent rating (%) was taken as the average value.....

N m

4.0

When the inspector rates spraying efficacy at 100% it means that the coca plants are completely ... In this case, Drs. Helling and Parra expressed the percent eradication for the pass and the lot. SL: Site not identified by Dr. Ron Collins. This evaluation was not taken into consideration in finding the averages for Site 14 Table 2 shows identification, location and geographic coordinate for the sites that were evaluated

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 ERADICATION OF COCA PLANTATIONS

- The representation and reliability criteria established in the verification procedure and agreed with international cooperation (USA) were met with full scientific rigor.
- Therefore, the national average for effective eradication through fumigation or the death of coca plants is 91.23% with a standard deviation of ± 12.64%. The percent of eradication for the Meta-Guaviare nucleus is 91.12% ± 11.79% and for the Caquetá-Putumayo nucleus it is91.4% ± 14.1%.

5.1.1 Guaviare-Meta Nucleus

- Nineteen lots were verified in this nucleus, as follows: Two in Meta of which only in one was it possible to land and make an on site verification; in the other, verification was made quickly from the air because the helicopters were harassed by gunfire. These sites are located in Puerto Toledo, jurisdiction of Puerto Rico. This nucleus still contains 300-500 ha of coca plants in lots of more than 10 ha each that are being farmed intensively.
- In El Retorno, in the Guaviare nucleus, on site verification was made in two lots. The findings were 95% ± 4.47% effective control or eradication within the airplane path and on the lot itself. These lots were prepared and selected using SPOT images from December '97 and January '98 which were available at DIRAN. In the other nuclei in the municipalities of El Retorno, Calamar and San Jose del Guaviare, regional control and eradication of coca plantations is greater than 90% of the area that existed in 1994/1998. Today, there are no more than 500-600 ha in those municipalities, and the trend is toward smaller plantations (less than 2-3 ha), interspersed with tree cover (forest farming system) whose overhead cover is made up of *yarumos*, balsa wood and other widely distributed halophytic pioneer species.
- In Miraflores, in the Guaviare nucleus, 16 lots were verified using detailed aerial reconnaissance in slow circular overflights at ground level for each lot. A 92.39% ± 8.79% effective eradication was measured.
- In summary, effective eradication from spraying in the Guaviare/Meta nucleus, including doublespray⁷, is 91.12% with ± 11.79 standard deviation. These results indicate
 - 1. Actual decrease or effective reduction of planted areas by over 90% in January 1998.
 - This means that the El Retorno, Calamar and San Jose del Guaviare with their respective areas, do not exceed, taken together, 500-600 ha. The individual plantations are small – 4 or 5 ha each, and are located in marginal rural consolidated settled areas.
 - 3. The Puerto Rico-Meta, as was said before, still includes around 300-500 ha that are located in an area that historically has been high risk due to attacks with firearms against spay planes and security helicopters. However, under current

⁷ Evaluation of doublespray must be performed using a random sample from the SATLOC registry. As a very quick estimate, the figure would not exceed 5%. In this kind of spraying over illegal plantations, where it is not possible to foresee obstacles or high risk situations, overspray should be considered negligible. This is not commercial spraying. The efficacy of the spraying is more closely tied to other technical and environmental parameters

conditions, some 10 or 12 OV-10 or T-65 highly controlled precision missions would be enough to destroy the existing illegal plantations.

- 4. The Miraflores nucleus includes two (2) different sectors. The north sector located to the west, north and east of the runway which is over 85% controlled and covers an area no greater than 500-700 ha. And the south sector, located south of Lagos del Dorado, which is 60% controlled and whose remaining area is perhaps 1000-1500 ha.
- 5. The difference between the theoretical area after spraying and the estimated remaining areas can be explained by re-planting of small areas which, by itself, is very little. Very likely, if the eradication process continues, the country is approaching the possible scenario of a Guaviare without large coca plantations and small remaining areas that can be managed within the framework of an integrated strategy of eradication and alternate development.

5.1.2 Caquetá-Putumayo Nucleus

- This nucleus was divided into two (2) major sectors or sub-regions: the southeast is located in Caquetá and covers mainly the municipality of Cartagena del Cairá (Lower and Upper Caguán), and the southeast which is located in the departments of Caquetá and northwest of Putumayo. This sector includes the municipalities of Albania, Valparaiso, Milan, Solano, Solita and Curillo, among others.
- Verification in this nucleus consisted of twelve (12) lots or sites. In the southwest, including Puerto Guzmán, Putumayo, eight (8) lots were checked and the efficacy was found to be 89.06% ± 16.23. Four (4) sites were verified in the southeast where the efficacy of aerial spraying was found to be 96.59% ± 5.27. In general, effective eradication or death of coca plants in the Caquetá-Putumayo nucleus is 91.42% ± 14.10%.
- Based on the above, a similar trend can be seen as far as the efficacy of spraying in the Guaviare-Meta nucleus. However, the remaining area of illegal coca plantations in the department of Caquetá is greater than in Guaviare. Of the 16,923.5 ha sprayed, around 15,485.0 ha have been effectively eradicated.
- The lot size in the southwest is small to medium (2 8 ha) and a tendency towards forming larger groups or nuclei. In the southeast lots are mainly large (greeter than 10 ha) and sometimes 60 – 100 ha forming groups with considerable areas.
- The southeast, in view of the grouping pattern and large lots, is an area that con be conveniently sprayed using OV-10 –type platforms. This sector covers the area of Billar, Varadero, Cuba, Cubita, Lower Sunsiya River and the mouth where the Caguán river flows into the Caquetá.
- In this Caquetá-Putumayo nucleus intensive work only began in January 1998 with some interruptions in February and March of the same year. Although it is not yet possible to see a major impact or a significant decrease in the cultivated areas, there are already areas in this region where control is greater than 90% (such as Montañita and Albania). This is a positive trend and, if it continues, within one year the region could reach Guaviare's current level, i.e., that of a controllable scenario.

5.2 ABOUT ILLEGAL COCA PLANTATIONS

- In most of the lots that were inspected —either through aerial reconnaissance or onsite verification— it is possible to see residual areas that were not sprayed. Growers keep these small areas with good vegetable cover, ready for production, even though the crops would be smaller. (See Photographs VC 22-RVC 01/98 and VC 5A-RVC 02/98).
- These residual areas or "conejos" as they are commonly known, remain because they are very close to the jungle or to very tall trees that make it difficult to spray them properly, or because they are located between non-overlapping passes of the aircraft (See photograph no. VC 32-RVC 01/98).
- Elsewhere, small coca spots can bee seen (less than 1 ha) with plant in very poor condition, such as necrotic and twisted leaves, sparse foliage, stunted re-growth, descending necrosis, etc. These remains can be considered out of production (see photographs VC 13-RVC 01/98 and VC 24A-RVC 02/98) because the plants exhibit severe physiological damage.
- In Meta-Guaviare there has been a considerable decrease in deforestation of the Amazon and Orinoco jungles. This indicates that there has been no translation or metastasis from the coca plantations. In this nucleus it is not true that dead crops are replaced.
- In Caquetá, especially in the southeast sector (lower and middle Caguán) there is a very significant nucleus or large-scale illegal coca plantations. In this nucleus the impact of spraying has not discouraged cultivation. However, the balance in July 1998 is very encouraging because some nuclei with an excellent degree of control can be seen already (e.g., southeast Caquetá).
- Although Caquetá shows some areas in the process of deforestation, they do not have the same rate and level as in 1997. This is also an indication that illegal coca plantations have decreased in this region.
- In conclusion, the Meta-Guaviare nucleus shows a significant decrease in cultivated areas —close to 90%— by January 1998. However, it will be necessary to maintain control over this area to prevent the growth of existing illegal coca plantations and the creation of new nuclei In Caquetá there is still a large area planted with coca that could easily exceed 20,000-25,000 ha.

6. QUALITATIVE ENVIRONMENTAL ASSESSMENT OF ILLEGAL CROPS AND SPRAYING

The environmental disaster produce by illegal coca plantations from their start all the way through production (agricultural work) until the coca leaf is processed into cocaine base and cocaine hydrochlorate are very visible and undeniable. For the specific situation of this verification it is necessary to divide the major environmental effects resulting from these activities.

6.1 ENVIRONMENTAL IMPACT OF AERIAL SPRAYING

- Only twice in the whole sample was there evidence of overspraying or drift as a consequence of runoff over an area less than 500 m² (0,05 ha(in each case. These isolated events are the result of obstacles at the end of the fumigation run (large trees over 40 m tall) that force the pilot to perform a very risky maneuver and close the bypass very tight. (See Photograph VC 34A-RVC 02/98).
- In situations such as these it is recommended to close the bypass 20 m before the last obstacle in the spray line. This could lead to lots being left with more small areas that have not been sprayed. In conclusion, the sampled areas do not show any significant damage in terms of size or duration, from lateral drift or poor applications. On close inspection, the natural vegetation around or next to the sprayed lots continues its natural succession with the flora in the abundance and composition that are typical for this type of ecosystem (see photograph 17A-RVC 02/98).
- Shrubs and small tress of the Yarumo, Balso and Manchador species found within the coca lots die after being sprayed as do the few grain and herbaceous species as well as the few plantain or yucca plants associated with illegal coca plantations. (See photographs VC6-RVC and VC 23A-RVC 02/98).
- The effect on the interspersed vegetation is very localized and low magnitude compared to the destruction of the tree cover produced by deforestation and fires set to set up illegal coca plantations. (See photographs VC 30A-RVC 02/98 and VC 8-RVC 03/98.)
- There were no instances where the on site inspections showed damage to the insect, bird or reptile population. No spraying over bodies of water was observed, whether lakes, lagoons, streams or rivers.

6.2 ENVIRONMENTAL IMPACT OF ILLEGAL CROPS

 There is no denying that the greatest environmental impact caused by illegal coca plantations is deforestation and its consequences such as loss of biodiversity, destruction of priceless and unknown bio-genetic resources, exhaustion of significant germ plasm banks, potential sources for future wealth and well-being for mankind, damage to the soil from fires that lead to erosion and a decrease in edaphic, aquatic, terrestrial and aerial fauna.

This large scale impact, in the case of Guaviare and Meta, has had a significant decrease in size. This means that the crops that have been sprayed and eradicated have not been replaced at the same rate of one for one, and they have not moved

deeper into the jungle, either The few crops that have been replaced have been replanted or weeded out in the same fields that have been sprayed, with 10% maximum growing potential, or in areas that have secondary forest cover (*barbecho*). (See photograph VC 28A-RVC 02/98.)

 The cumulative environmental impact of deforestation (fires and fellings) in Guaviare and Meta during 1970 – 1996 caused a real forest massacre that became the first step towards turning the Colombian Amazon and Orinoco areas into pastures through the creation of extensive cattle ranches.

In the specific case of the department of Meta the loss of tree cover caused by illegal coca plantation had a growing and devastating impact on the gallery forest ecosystems or "mountain plants" which are the only tree and shrub vegetation in the biome of the Orinoco plains. (See photograph VC 15-RVC 01/98). These forests are the places where all the ecological interactions vital for the biome in question take place. And these forests are also the vegetable mass that produce and regulate countless rivers and rivulets that have their origins here with their inherent water supply.

- In Caquetá, the new clearings or deforestation are greater than in Guaviare and are a major concern. In Putumayo the situation is very different It is characterized by large areas of highly technified illegal coca plantations, massive deforestation and uncontrolled fires. It would seem as is the big backlash of illegal plantations in the Orinoco and Amazon areas were taking place in Putumayo.
- In all lots verified from the air or on the ground, an aggressive natural regeneration process can be observed, with a large number of species. (See photograph VC 16-RVC 03/98). In general, it has been more than 180 days since these lots were sprayed. The excellent biological activity in the soils, both micro-fauna and arthropods, is also worth noting. This means that a good number of insects can be found mainly representatives of the annelids, termites, ants and spiders.
- The main species in natural regeneration present in the vegetable succession that are abundant and frequent in the Orinoco biome after spraying are listed below. Structurally, this succession is dominated by a thick herbaceous cover in grasses of the *Panicum sp.* and *Paspallum sp.*, among others.

COMMON NAME	SCIENTIFIC NAME	STRATUM
Guaramo – Yarumo	Crecropia sp	Tree
Tabaquilla	Aegiphila sp.	Tree
Tórtolo	Schefiera morototoni	Tree
Balso	Ochroma piramidale	Tree
Gualanday	Jacaranda lassiogime.	Tree
Tuno peludo	Clidemia sp.	Shrub
Cadillo	Triumfetta sp.	Shrub
Punta lanza	Vismia laurifalia	Shrub
Limoncillo -	Siparune sp,	Shrub
Cucharo	Myrsine sp.	Shrub
Lechero	Euphorbia sp-	Herbaceous
Bledo	Achyranthus sp.	Herbaceous
Violeta montañera	Sauvagosia sp,	Herbaceous
Cucubo	Solanum sp.	Herbaceous
Trepador	Stigmaphylum sp.	Vine
Enredador	Hippocratea sp.	Vine
Rabo de zorro	Andropugurn bicornis	Herbaceous (grasses)

The main species in the pioneer succession of the Amazon biome are characterized by the fact that they belong to an abundant community of grasses and a large variety of shrubs and trees. Structurally, individuals belong to juvenile heliophitic species of large trees with a rich and varied substratum of very active arthropod fauna. Some of these species are:

COMMON NAME	SCIENTIFIC NAME	STRATUM
Guayabo	Psidium guaiaba	Tree
Mendrillo	Clavija sp	Tree
Guarumo rosado	Cecropia sp	Tree
Dormilón	Stryphnodendron sp.	Tree
Chocho	Ormosia sp.	Tree
Cordoncillo	Piper sp.	Shrub
Frijolillo	Clitoria sp.	Shrub
Venadillo	Conyza nonariensis	Shrub
Mispero	Bellucia sp.	Shrub
Batatilla	ipornea sp.	Vine
Agraz	Cissus sp,	Vine
Granadilla de montaña	Passiflora sp.	Vine
Platanillo	Calathea sp.	Herbaceous
Cucubo	Solanum sp,	Herbaceous
Helecho	Pitysograma sp.	Herbaceous
Grama	Paspallum sp.	Herbaceous(gra sses)
Palma	Bactris sp	Palm

Lastly, there were very few agricultural crops next or close to the illegal coca plantations. Some corn, plantain and yucca could be seen in small lots can bee seen, sometimes interspersed with coca lots. However, the cultivation patter is characterized by large patches surrounding primary forest, illegal plantations in different sizes in the middle of the jungle, medium and small illegal coca plantations in marginal areas, either rural or with consolidated settlements, and natural pastures or natural successions with extensive cattle raising. Non of the lots verified showed any damage from Glyfosate spraying.

PHOTOGRAPHIC RECORD

GUAVIARE – META NUCLEUS Municipality of Puerto Rico – Meta Municipality of El Retorno – Guaviare Municipality of Miraflores – Guaviare

CAQUETÁ – PUTUMAYO NUCLEUS Municipality of Cartagena del Chairá – Caquetá Municipality of Solita – Caquetá Municipality of Valparaiso – Caquetá Municipality of Puerto Guzmán – Putumayo

NOTE: Contains also field report forms for on-site verification of sample lots.

ON-SITE INSPECTION OF COCA LOTS SPRAYED AND SELECTED

INSPECTOR'S NAME: LUIS EDUARDO PARRA_SITE No: 10 DATE 20/10/98 TIME :3:15 PM

%TOTAL CONTROL		93,3	0.06	0.00	03.2	0,00	90'06	90.0	06.7	1,00	88.3	88.3	000	30.0	90.0	000	Z.U	
% CONTROL SECTOR C	100	100	100	85	100	000	80	100	100	001	85	85	100	202	. 93.5	R.7	0.1	
CONTROL SECTOR C	100	100	80	100	100	100	001	90	85		100	100	85		66	63	0.0	
% CONTROL SECTOR A	RO		80	85	80	80	200	80	85		80	80	. 65	01 5	0,0	2.3		
PLANT NO.	F		7	e	4	5		٥	2	c	. 0	6	10					
FLIGHT CODE PLANT NO.	A268DCAC						ODAA TION	NOTIVINO	LOT No.					Z		ON		ND.
FIELD COORDINATES (HAND-TRIMBLE- GPS)	N 03° 00' 17.04"	11 730 JAI 2001	770 17 01 44				SPOT IMAGE INE		CUINO. LOTNO.					ARITHMETIC MEAN		STANDARD DEVIATION	TVDICAL MEAN FOOD	
SAILUC COORDINATES	N03° 00.0583'	W 73º 24 2483'	00.11.1 0					DI OT N-	FLUI NO.		110	211						

SPRAYING OUTSIDE THE TARGET OR ON OTHER PLANTS ¥.

None. Lot very overgrown with weeds. Plants are affected only by fumigation. Remaining plants exhibit curled leaves, without terminal buds and poorly formed re-growth.

DRIFT AND DAMAGE Ċ.

No damage was detected in the surrounding trees, grasses. No drift was observed. Ninety per cent of the area is under control ن ن

CONDITIONS OF THE COCA PLANT AND OTHER COMMENTS

More than 90% of the lot is completely abandoned. Houses and labs no longer exist. (Photographs 28 and 29(. The initial lot was over 20 ha. In one part of the lot (± 2 ha) coca leaves were being picked from a sector that must not have been sprayed for any number of reasons.

SATLOC FIELD	FIELD COORDINATES	FLIGHT CODE PLANT No.	PLANT No.	% CONTROL	%CONTROL	% CONTROL	TOTAL CONTRY
anc	(Hand-Trimble-GPS)			SECTOR A	SECTOR C	SECTOR C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
z	N 02° 11.531'	G058UQBC	1	100	100	100	100
3	W 72° 27,180'	G058WOAC	2	100	100	100	100
		G138UQBC	3	100	100	100	100
			4	100	100	100	100
FOR	SPOT IMAGE INFORMATION		5	95	100	100	08.3
	A EN SW		9	100	100	100	100
	CUT No	LOT NO.	2	06	100	100	00 J
			®	100	100	100	100
	D2	2396	6	100	100	100	100
			10	100	100	100	100
ARITHMETIC MEAN	AN			98.5	100	. 100	00 6
STANDARD DEVIATION	TION			32		0	0'00
TYPICAL MEAN ERROR	ROR			1	>		

ON-SITE INSPECTION OF COCA LOTS SPRAYED AND SELECTED INSPECTOR'S NAME: LUIS EDUARDO PARRA SITE No: 3 DATE:: 20/10/98_1TIME: 12:15 PM

SPRAYING OUTSIDE THE TARGET OR ON OTHER PLANTS ż

Perfect SPOT image. Lot size and shape can be seen clearly None.

DRIFT AND DAMAGE m.

Young yaurmo trees that covered the coca plants as agricultural crop died. No drift.

C. CONDITIONS OF THE COCA PLANI AND UTHEN COMPLANIC. Photographs 4, 5, 6 and 7, last aerial shot from the NW. Natural regeneration and succession process is exuberant.

0
Ш
-
0
111
щ
_
ш
(D)
0
-
4
\triangleleft
_
111
-
-
A
~
LL_
0
S
S SPR/
(D)
-
Ó
~
Ц
ALO
A L(
A L(
A L(
OCA L
V OF COCA L
V OF COCA L
V OF COCA L
V OF COCA L
V OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
V OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L
CTION OF COCA L

Md
2
ŝ
ME
Ē
DATE 20/10/98 TIME :3:15 PM
0110
20
TE 2
DA
4
^o N
SITE N
5
S.
ARF
D D
SPECTOR'S NAME: LUIS EDUARDO PARRA
A
ED
<u>S</u>
3
ME
AN
S'S
0
5
ISPE
≤

SATLOC COORDINATES	FIELD COORDINATES	FLIGHT CODE	PLANT NO.	% CONTROL SECTOR A	% CONTROL .SECTOR C	% CONTROL SECTOR C	TOTAL CONTROL %
N 02º 11.1667' N 02º 11.217'	N 02° 11.217'	G058UQBC	-	100	100 ·	100	100
W 72° 26.6668'	W 72° 26.496'	G058WOAC	2	100	100	100	100
		G138UQBC	в	100	100	100	100
			4	100	100	1130	100
			5	100	100	100	100
	SPOT IMA	SPOT IMAGE INFORMATION	6	100	100	67	99.0
PLOT No.	CUT No.	LOT No.	7	100	100	98	99,3
			8	100	90	100	96,7
190	D2		6	100	100	95	98,3
			6	100	100	96	98.7
	ARITHMETIC MEAN			100	66	98.6	99.2
S	STANDARD DEVIATION	7		0	e	1.9	1.0
	TYPICAL MEAN ERROR	8					

A. SPRAYING OUTSIDE THE TARGET OR ON OTHER PLANTS
 No damage to surrounding trees or bushes. No overspray or doublespray problems detected. The SPOT image application is perfect.
 B. DRIFT AND DAMAGE

None

C. CONDITIONS OF THE COCA PLANT AND OTHER COMMENTS Natural regeneration of grains, vines, palm tress and *yarumos* is abundant. Within the lot and in the aircraft pass some dead young balsa and *yarumo* trees could be seen (Photographs 1, 2 and 3, roll 1).

0	
Щ	
5	
Ĕ	
ND SELEC	
5	
0	
Z	
4	
D	
ш	
≿	
2	
0	
S	
TS SPRAYEI	
5	
9	
-	
ö	
ŏ	
F COCA LOT	
ш.	
0	
Z	
0	
F	
NSPEC	
6	
S	
Z	
ш	
E	
S	
ź	
0	

INSPECTOR'S NAME: LUIS EDUARDO PARRA_SITE No: 16 DATE 23/10/98 TIME :3:15 PM

A SECTOR C SECTOR CONTROL	100	100 100.0	100	100 100 100	100	100 100 100,0		100 100.0	100	100 100 400,0		100 100 100,0	0,0		
% CONTROL SECTOR A	100	100	100	100	100	100	100		1100	100	100	100	0.0		
PLANI NU.	۲-	7	3	4	ۍ	9	7	8	9	10					
FLIGHI CODE	D115SHNBC					INFORMATION	CUT No					7	ON	OR	
HIELD COORDINATES (HAND-TRIMBLE-GPS)	N 00° 38.846'	W 74° 28.130'				SPOT IMAGE INFO	LOT: No					ARITHMETIC MEAN	STANDARD DEVIATION	TYPICAL MEAN ERROR	
SATLOC COORDINATES	N 00° 19.1007'	W 74° 27.9887'					PLOT No.			118					

SPRAYING OUTSIDE THE TARGET OR ON OTHER PLANTS

A. SPRAYING OUTSIDE THE TARGET OR ON OTHER PLANTS
Pass control: 100%. Lot control: 100%
B. DRIFT AND DAMAGE
None
C. CONDITIONS OF THE COCA PLANT AND OTHER COMMENTS
Photographs 11, 12, 13, 14, 15, 16 and 17. Excellent natural regeneration. High development of grains, *yarumos* and herbaceous plants. Lot shows excellent control

Annex 59

UNITED STATES DEPARTMENT OF STATE, BUREAU FOR INTERNATIONAL NARCOTICS MATTERS, HERBICIDE SELECTION FOR COCA ERADICATION, MAY 1984

(United States Department of State, Bureau for International Narcotics Matters, May 1984)

Annex 59

. . .

Herbicide Selection for Coca Eradication

Prepared for:

U.S. Department of State Bureau for International Narcotics Matters

Contract No: 2071-410014

May 1984

EXECUTIVE SUMMARY

The Bureau for International Narcotics Matters (INM), U.S. Department of State, is considering conducting field studies to evaluate the effectiveness of selected aerially applied herbicides in eradicating illicit coca plants in the tropics.

This report summarizes the selection of priority herbicide candidates from approximatey 175 herbicides under consideration for use in field studies. Selection criteria were based primarily on efficacy (potential to kill coca or other perennial woody plants), practicality for use in the tropics, and general safety (including environmental and human health hazards).

Six "priority herbicide candidates" were judged as having the greatest potential for field testing: 2,4-D, dicamba (e.g. BANVEL), dichlorprop (2,4-DP), glyphosate (e.g. ROUNDUP), picloram (e.g. TORDON), and triclopyr (e.g. GARLON). Brief synopses of their efficacy, general safety, and use are given.

ii

Annex 59

PREFACE

This report, "Herbicide Selection for Coca Eradication", was prepared for the Bureau for International Narcotics Matters (INM), U.S. Department of State, under Contract No. 2071-410014. Mr. Robert Gifford was the contracting officer's technical representative; Mr. John McLaughlin, contract project officer, provided much of the guidance.

This report details the selection of the herbicides to be considered for the aerial eradication of coca. The six herbicides selected have been evaluated only for their use in field tests to be conducted by INM. These field tests are expected to be conducted in a way that will determine which herbicide is most effective in killing coca with the least adverse environmental and human health impacts. After these field tests have been conducted, and the results have been evaluated, INM may select a herbicide to be used in a coca eradication program.

i

715

CONTENTS

•

Page

.

.

PREF EXEC	ACE UTIVE SUMMARY	i ii
1.0	INTRODUCTION	1
2.1 2.2	HERBICIDE SELECTION Level 1 Selection Criteria Level 2 Selection Criteria Priority Herbicide Selection	2 - 2 3 6
3.1 3.2 3.3	PRIORITY HERBICIDE CANDIDATES Efficacy Environmental Impacts Human Health Hazards Application Cost	8 10 11 13 14 15
4.0	SUMMARY	15
Apper	ndix A Level l Herbicide Candidates Detailed Listing	A-1

REFERENCES

iii

Annex 59

, stara

LIST OF TABLES

•

	Page
Table 1 Level 1 Herbicide Candidates (listed alphabetically)	4
Table 2 Level 2 Herbicide Candidates (listed alphabetically)	5
Table 3 Priority Herbicide Candidates for Coca Eradication (listed alphabetically)	7
Table 4 Cost Information for the Priority Herbicide Candidates	16

: '

iv

1.0 INTRODUCTION

The Bureau for International Narcotics Matters (INM), U.S. Department of State, is currently investigating the possible use of herbicides for the eradication of coca. In 1979 a study group for the United Nations Marcotic Laboratory examined methods for destroying illicit narcotic crops including: chemical (herbicidal), mechanical, fire, biological, and genetic (U.N.N.L. 1979). The U.N. group concluded that chemical methods for eradication are at present the best methods available. Other methods are not as practical for use in the tropics (e.g. requiring large labor forces and security) or are not adequately developed for use. INM's investigation focuses on the use of chemicals applied aerially to the plant foliage. The purpose of this report is to select and list those available herbicides which offer the greatest potential for coca eradication.

Because of the lack of research on the effectiveness of herbicides on coca, SRA project staff members approached this task by utilizing one basic assumption; herbicides that exhibit effectiveness on plants botanically similar to coca should be potentially effective on the coca plant. Therefore, herbicidal evaluations have been based on the effectiveness of the herbicide in killing perennial broadleaf weeds and woody plant species. These herbicidal evaluations have been developed through a screening process (discussed in Section 2) that eliminated herbicides unable to meet specific criteria. The screening process identified six priority herbicides for which brief synopses were developed summarizing

1

efficacy, general safety, and use. These six herbicides will be evaluated for use on coca in future field tests.

2.0 HERBICIDE SELECTION

All herbicides listed in the <u>Herbicide Handbook</u> of the Weed Science Society of America (WSSA 1983) were evaluated for use in the field test program for coca eradication. <u>Farm Chemicals Handbook</u> (Meister 1984) was used as a secondary reference to ensure a comprehensive review of all major herbicides.

2.1 Level 1 Selection Criteria

Approximately 175 herbicides were screened (WSSA 1983, Meister 1984) to include only those that meet the following criteria:

- Control perennial broadleaf weeds or woody plants, excluding those limited to suppressing vegetative growth and seedhead production.
- Currently registered with the U.S. EPA.
- Currently manufactured in the U.S.
- Developed for terrestrial applications, excluding those restricted to aquatic weed control.
- Developed for postemergence application.

The 55 herbicides meeting these criteria are presented in Table 1. Appendix A presents a detailed version of Table 1 that includes specific trade names of herbicidal products and their manufacturers.

2.2 Level 2 Selection Criteria The herbicides presented in Table 1 were further screened on the basis of meeting at least one of the following criteria:

- Demonstrated positive herbicidal effects on coca.
- Demonstrated positive control of deep-rooted perennials, woody plants, or brush.
- Demonstrated use in tropical locations or on tropical food crops (e.g. sugarcane, bananas, pineapple, coffee), or use in similar conditions such as in the southern United States (i.e. Florida, Texas).
- Demonstrated use for rights-of-way or general vegetation control, field applications that are similar to the narcotics control mission.

Table 2 lists 24 herbicides that meet at least one of the above criteria.

3

Table 1 Level 1 Herbicide Candidates (listed alphabetically)

- Acifluorfen sodium
- Ametryn
- Amitrole
- AMS
- Asulam
- Atrazine
- Benazolin
- Bentazon
- Bifenox
- Borate (meta)
- Borata (octa)
- Borax
- Bromacil
- Butachlor
- Cacodylic acid
- CDAA
- Chloroxuron
- · Chiorsulfuron
- Cyanazine
- 2,4-D
- 2,4-DB
- Dicamba
- 3,6-Dichloropicolinic acid

:

- Dichlorprop
- Diquat
- Diuron
- Endothall
- ∍ Fenac

- Fenuron
- Fenuron TCA
- · Fosamine Ammonium
- Glyphosate
- Hexazinone —
- Karbutilate
- MCPA
- MCPB
- Mecoprop
- Metribuzia
- Monuron TCA
- MSMA
- Nitrofen
- Oxyfluorfan
- Paraquat
- · Pendimethalin
- Picloram
- Prometon
- Pronamide
- Propanil
- Simazine
- Sodium Chlorate
- TBA
- Tebuthiuron
- Terbacil
- Terbutrya
- Triclopyr

Table 2

Level 2 Herbicide Candidates (listed alphabetically)

.

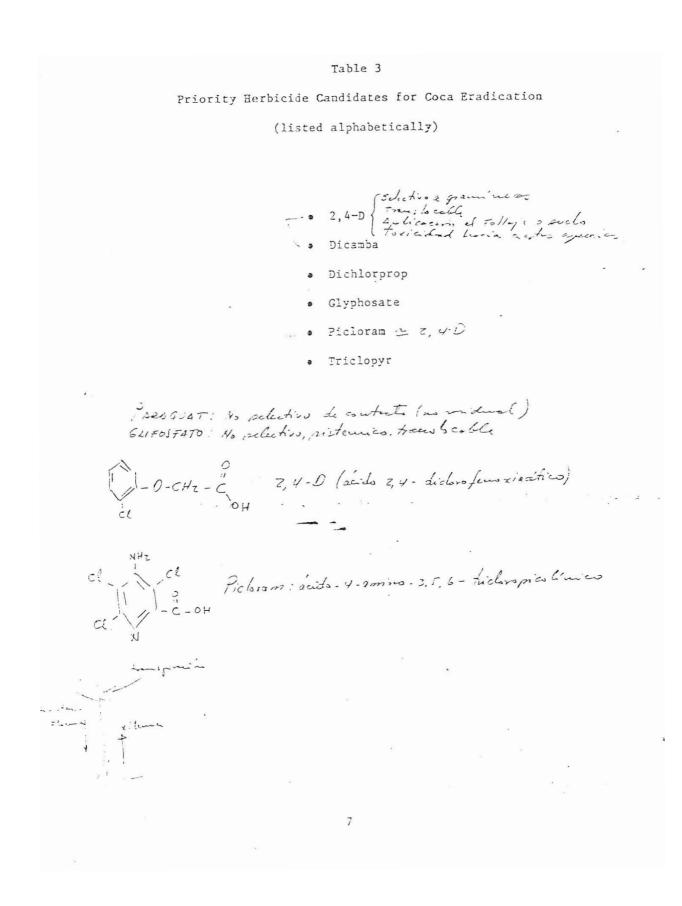
- Acifluorfen sodium
- Ametryn
- AMS
- Asulam
- Atrazine
- Bromacil
- Dicamba
- Fenac
- Fenuron
- Fenuron TCA
- Fosamine Ammonium
- Glyphosate
- Hexazinone
- Karbutilate
- Oxyfluorfen
- · Paraquat_ -
- Picloram
- Sodium Chlorate
- TBA
- Tebuthiuron
- Triclopyr

5

اس محمد ما محمد الله الجاري ، الحالة المان المحمد المحمد والمحل . الحجاب المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد والمحل

Annex 59

×


2.3 Priority Herbicide Selection

The 24 herbicides in Table 2 were further evaluated for their degree of potential to eradicate perennial woody plants, their level of ability to . perform in tropical environments, and their general safety.

The "Priority Herbicide Candidates" listed in Table 3 were judged to be the best candidates for field testing. Their primary advantages are that they: are primarily foliarly active, may be aerially applied, function at low application rates, may be used in combination with each other, and are not dependent on rainfall for activity.

Priority herbicides may be more effective in eradicating coca when used in combination (e.g. picloram may enhance the translocation of 2,4-D according to Kasasian, 1971). Those combinations thought to have the greatest potential are: 2,4-D and picloram (TORDON 101, TORDON RTU, AMDON 101); 2,4-D and dicamba (WEEDMASTER, BANVEL 520, BANVEL 720, BANVEL K, ACME Brush Killer 800, ACME Industrial Brushkiller); and 2,4-D and triclopyr (ESTERON BK).

Bromacil, hexazinone, and tebuthiuron would probably be effective for coca eradication; however they are primarily slow acting and are soil active. These compounds have other disadvantages such as usually requiring granular application and being dependent upon rainfall for activation.

.

Paraquat would probably be the most effective herbicide for simple defoliation or leaf dessication. Its potential to kill coca would be improved if used in combination with translocated herbicides such as 2,4-D, Dicamba, Picloram, or Triclopyr. Paraquat or other contact herbicides should not be applied at high rates when used in combination with a translocated herbicide. At excessive rates of Paraquat, leaf defoliation may occur before the other herbicide has effectively translocated from the leaf into the conductive tissues (Kasasian 1971, Johnson 1984). If a determination is made to field test paraquat, application rates will have to be adjusted to site-specific conditions.

The other herbicides in Table 2 were considered to be potentially less effective than those previously mentioned in this section, were considered impractical for use in the tropics, or required special safety considerations (e.g. TBA, Sodium Chlorate). Information for this section was primarily based on discussions with five herbicide field specialists: Curry (1984), Johnson (1984), McGlamery (1984), Palmer (1984), and Worsham (1984).

3.0 PRIORITY HERBICIDE CANDIDATES

In this section the six priority herbicides (Table 3) are discussed with respect to the following characteristics: efficacy, environmental impact, human health, logistics, and cost.

8

The components of these various characteristics are as follows:

- Efficacy
 - general herbicidal use relevant to coca
 - herbicidal absorption and translocation
- Environmental Impact
 - persistence in water and soil
 - toxicity to fish and wildlife
- Human Health Hazards
 - signal word*
 - outstanding hazards and precautions
- Logistics
 - method of application and carrier
 - relevant premixed trade products and mixtures
- Cost
 - actual herbicide costs

^{*} The "signal word" appears on all EPA approved herbicide labels. These correspond to specific rankings into a "Toxicity Category" based on results of acute oral, dermal, and inhalation toxicity studies. In decreasing order of toxicity these signal words are: Danger, Warning, and Caution. (The signal word for some herbicide labels may be upgraded within the next 6 months by the U.S. EPA.)

· · 3.1 Efficacy

2,4-D. 2,4-D, which controls broadleaf weeds, translocates within the phloem after foliar applications and upward in the transpiration stream after basal applications (WSSA 1983).

Studies are currently being conducted on the basal and foliar applications of 2,4-D on <u>E. coca</u>, but results have not been published (SSIE 1983, Gentner 1984).

Dicamba. Foliar and soil applications of dicamba will control perennial broadleaf weeds and woody brush species, including those species that are resistant to phenoxy herbicide, treatment. Both leaves and roots of plants readily absorb dicamba. It readily translocates via the plant root systems or from the leaves (WSSA 1983.)

Dichlorprop. Dichlorprop controls a broad spectrum of weeds and is used for brush control in nonagricultural land. Dichlorprop translocates throughout the plant and is widely used in combination with other herbicides (WSSA 1983).

Glyphosate. Glyphosate exhibits effective control over deep-rooted perennial species, broadleaf weeds, and woody brush species. Glyphosate is absorbed through leaves and translocated throughout the plant. Translocation to underground systems of perennial species prevents regrowth and Subtracts.

10

results in subsequent destruction. Foliar application of glyphosate at 8.9 kg/ha in 187 l/ha defoliated coca but did not inhibit the regrowth of smaller leaves. The treatment therefore did not destroy the cambium layer and the plant was not killed (SSIE 1983).

Picloram. Picloram controls perennial broadleaf weeds, including deeprooted herbaceous weeds and woody plants. Picloram is rapidly absorbed by leaves and roots and translocates both up and down in plants (WSSA 1983).

Triclopyr. Triclopyr controls woody plants and broadleaf weeds. Triclopyr is readily absorbed by leaves and roots and translocates both up and down in plants (WSSA 1983).

3.2 Environmental Impacts

2,4-D. When applied at recommended rates, 2,4-D persists in warm, moist soils for 1 to 4 weeks. 2,4-D ester is relatively toxic to fish and should be used with care in aquatic environments. Low volatile ester formulations are available and could be used to reduce possible off-target impacts (WSSA 1983).

Dicamba. When applied at recommended rates, dicamba is moderately persistent (Kasasian 1971). It will persist in moist soils for 3 to 12 weeks and may persist longer in soils exhibiting lower moisture levels. Under conditions of rapid metabolism, such as those found in tropical climates,

11

dicamba exhibits a half-life of less than 14 days. Dicamba exhibits a low order of toxicity to fish and wildlife (WSSA 1983).

<u>Dichlorprop</u>. Dichlorprop is chemically similar to 2,4-D and is expected to act similarly in the environment. It is toxic to fish and should not be applied when runoff is likely to occur or under conditions favoring spray drift (Union Carbide 1983, Johnson 1984).

<u>Clyphosate</u>. Clyphosate is a non-volatile herbicide and is relatively nonpersistent in soils when applied at recommended rates. Glyphosate exhibits a relatively low order of toxicity to fish and wildlife (WSSA 1983.)

<u>Picloram</u>. The persistence of picloram in soils may be considerable; depending on geographic location, climatic conditions, and rate of application (Kasasian 1971). Persistence is lower in warm, humid conditions. Picloram exhibits a low order of toxicity to fish and wildlife (WSSA 1983.)

<u>Triclopyr</u>. When applied at recommended rates, triclopyr exhibits moderate persistence in soils, with a half-life of 46 days depending on soils and climatic conditions (WSSA 1983, Johnson 1984).

3.3 Human Health Hazards

<u>2,4-D</u>. The signal word (see page 9) on 2,4-D labels is "Caution." The acid form is nearly twice as toxic as the butyl ester formulations. The oral LD50 for the acid form is 370 mg/kg in rats (Meister 1984). 2,4-D is believed to have little potential for causing human health problems (U.N.N.L. 1979).

Dicamba. The signal word for dicamba is "Caution." It is of a low order of acute toxicity (VELSICOL 1981). The oral LD50 is 1,707 to 2,900 mg/kg in rats (Meister 1984).

Dichlorprop. The signal word for dichlorprop is "Caution." It is of a low order toxicity to mice and rats. The oral LD50 is 800 mg/kg for rats (Meister 1984).

a se a la service de la caracterista de la service de la

Glyphosate. The signal word for glyphosate is "Warning." Although moderately toxic, it is considered to be among the least toxic herbicides (U.N.N.L. 1979). The oral LD50 for rats is 4,300 mg/kg (Meister 1984). No cases of human poisoning have been reported (WSSA 1983).

Picloram. The signal word for picloram is "Warning." It is considered moderately toxic. The oral LD50 for rats is 8,200 mg/kg (Meister 1984). Picloram is not readily absorbed through human skin (WSSA 1983).

13

Triclopyr. The signal word for triclopyr is "Warning." It is categorized as slightly toxic. The oral LD50 in rats is 713 mg/kg. It is generally not a dermal irritant or absorbed through the skin (WSSA 1983).

3.4 Application

<u>2,4-D</u>. 2,4-D application is generally basal and foliar. Salts of 2,4-D are soluble in water. 2,4-D esters are soluble in oil and other organic solvents and thus are generally applied in the form of emulsions. In premixed trade products, 2,4-D is combined with other herbicides such as; dicamba, MCPP, dichlorprop, and MSMA. 2,4-D is often mixed with picloram, benazolin, and dicamba for herbicidal use. (WSSA 1983, Meister 1984.)

<u>Dicamba</u>. Dicamba is generally applied both basally and foliarly. Dicamba salts are soluble in water. In premixed trade products, dicamba is combined with 2,4-D and MCPA. Dicamba is often mixed with 2,4-D, dichlorprop, and numerous other herbicides for registered use. (WSSA 1983, Meister 1984.)

<u>Dichlorprop</u>. Dichlorprop is generally applied foliarly.and is water soluble. In premixed trade products, dichlorprop is combined with bentazon, benazolin, 2,4-D, dicamba, and MCPA. (WSSA 1983, Meister 1984.)

14

3

<u>Glyphosate</u>. Glyphosate is generally applied foliarly and is water soluble. Glyphosate is not used in premixed trade products and is not generally used in mixtures. (WSSA 1983, Meister 1984.)

<u>Picloram</u>. Picloram is generally applied both basally and foliarly and is water soluble. In premixed trade products, picloram is combined with 2,4-D (WSSA 1983).

<u>Triclopyr</u>. Triclopyr is generally applied both basally and foliarly and is water soluble. In premixed trade products, triclopyr is combined with 2,4-D (Dow Chemical Co. 1983).

3.5 Cost

Cost information for the priority herbicides is presented in Table 4. The actual costs of herbicides are almost negligible when compared to the costs of aircraft acquisition, maintenance, and operation; or the use of back-pack sprayers and trained personnel. Therefore, efficacy, potential environmental impacts, and human health hazards will be used to evaluate the selection of the herbicides.

4.0 SUMMARY

This report summarizes the screening of approximately 175 herbicides under consideration for use in field studies for eradicating coca in the tropics. Selection criteria were based primarily on efficacy (potential to

15

			Cost Information	Oxst Information for the Priority Nerbicide Candidates	terbledde Candf	र्यवारच्छ		•
Ibrbielde Name	Trivke Product Naue (uexed only as an example)	X Active Ingredient (a.1.) or Acid Byulvalent (a.e.)	Matulfacturer's Novae	lollars/tallou	Max Iman Reconnected Rate/Arre ²	Dollars/Acre at Reconnergal Hextman Bate	Dollars/Arre at 1/2 Reconnerked Maximum Bate	Dollars/Acre at 1/4 Recouncerded Mixfinum Rate
2, 4i)	WT ENOUSEM	3.8 lb/gal a.e.	Union Carbide	\$15 - \$21	2 gallons	\$30 - \$42	\$15 - \$21	\$7.50 - \$10.50
ામાં ત્રામાં કરા	O 'EINNNI	60.2% a.t.	Velsicol.	*** 75\$ - 7h\$	2 gallons	\$94 - \$114	\$47 - \$57	\$23.50 - \$28.50
Dichlorprop	Dichlorprop WHEXXE 2,4-DP	3.7 lb/gal a.e.	Unlon Carbide	\$17 - \$23	2 gallons	\$34 - \$16	\$17 - \$23	\$8. ¥0 - \$11. 50
Clyphosate	J(KEALICA)	41%	Monsanto	\$65 - \$75 +	4 gallons ?	\$260 - \$300	\$130 - \$150	\$65 - \$75
Picloran	WOI NXRIAL	10.2% picloran 39.6% 2,4-D	D.w. Chenical	\$20 - \$30	6 gallous	\$120 - \$180	06\$ - 09\$	\$30 - \$45
Triclopyr	CARLON 4	61.6% a.1.	Dow Chendcal	\$55 - \$65 + J	2 gallons	\$110 - \$130	\$55 - \$65	\$27.50 - \$32.50
1/ Ranges Ix	levol Seglonal	1/ Runges braced on Regional Distributors' costs and should be interpreted relative to other cost ranges	ud should be inte	rpreted relative to	o other cost r	untes	The second	

erpreted relative to other cost ranges

2/ Niximum Recommended Rate as found on EPA-registered product labels for woody plants, broadleaf weeds or

Annex 59

kill coca or other perennial woody plants), practicality for use in the tropics, and general safety (including environmental and human health hazards).

-1--

- -

- fras

Six "Priority Herbicide Candidates" were judged as having the greatest potential for field testing, these are: 2,4-D, dicamba (e.g. BANVEL), dichlorprop (2,4-DP), glyphosate (e.g. ROUNDUP), picloram (e.g. TORDON), and triclopyr (e.g. GARLON). Brief synopses of their efficacy, general safety, and logistics are given.

The priority herbicides when used in combination with one another or with other herbicides such as paraquat may be as effective as or more effective than when used singly. Therefore, combinations should be considered in the design of field tests.

-

4

APPENDIX A

.*

•

APPENDIX A

Level 1 Herbicide Candidates -- Detailed Listing (listed alphabetically)

.

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
Acifluorfen-Sodium	BLAZER 25	Rohm and Haas
Actification Social	TACKLE 2AS	Rhone-Poulenc
Ametryn	EVIK 80W CRISATRINE	Ciba-Geigy
Amitrole	AMITROL-T	Union Carbide
	AMIZINE (amitrole + simazine)	Union Carbide
	AMIZOL	Union Carbide
	FENAMINE (amitrole, + fenac + atrazine)	Union Carbide
	KLEER-LOT (amitrole + linuron)	Union Carbide
	WEEDAZOL	Union Carbide
	AMINO TRIAZOLE	American Cyanamid
	CYROLAMINTROLE-T	American Cyanamid
AMS	AMMATEX-NI	Dupont
8	Weed & Brush Killer	
Asulam	ASULOX	Rhone-Poulenc/May & Baker
	ACTRIL DS (asulam + 10xynil)	Rhone-Poulenc/May & Baker
	(CANDEX 70 (asulam + atrazine)	Rhone-Poulenc/May & Baker
	DIALAM (asulam + diuron)	Rhone-Poulenc/May & Baker
	TARGET (asulam +	Rhone-Poulenc/May & Baker
	dalapon) TALENT (asulam +	Rhone-Poulenc/May & Baker
	paraquat)	
trazine	AATREX 80W	Ciba-Geigy
	AATREX Nine-0	Ciba-Geigy
	AATREX 4L	Ciba-Geigy
	AATREX 4LC	Ciba-Geigy

A-1

•

.

Appendix A (continued)

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
	ATRATOL 8P (atrazine, + sodium chlorate + sodium metaborate) ATRATOL 8P (atrazine + prometon) BICEP 4.5L (atrazine + metachlor) Atrazine 4L Atrazine 80W CO-OP Liquid Atrazine CO-OP Atrazine 80WP CO-OP ATRA-PRIL	Ciba-Geigy Ciba-Geigy Ciba-Geigy Shell Shell Farmland Industries Farmland Industries Farmland Industries
Benazolin	LZY-CORNOX (Benazolin + 2,4-DB+ MCPA) TRI-CORNOX Special (Benazolin, Dicamba + 2,4-P BENAZALOX (Benazolin + 3,6- dichloropicolinic acid)	BFC Chemicals BFC Chemicals BFC Chemicals
Bentazon	BASAGRAN	BASF
Bifenox	Modown 2EC Modown 802 VP Modown4- Flowable	Rhone-Polulenc
Borate (Meta)	MONOBOR-CHLORATE MONOBOR-CHLORATE GRANULAR MONOBOR-CHLORATE GRANULAR D (+ diuron) New Improved UREABOR	Occidental Occidental Occidental Occidental
Borate (Octa)	POLYBOR	U.S. Borax

,

A-2

.

Appendix A (continued)

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
Borax	BOROCIL (borax ÷ boromacil) UREABOR mixture (borax + monuron)	Occidental . Occidental
Bromacil	HYVAR-X Weed Killer HYVAR-XL Weed Killer KROVAR I Weed Killer (bromacil + diuron) KROVAR II Weed Killer (bromacil + diuron) UREABOR BOROCIL (borate + bromacil) UROX B UROX HA ROUT G-8 (bromacil + diuron)	Dupont Dupont Dupont Dupont Occidental Hopkins Hopkins Hopkins Hopkins
Butachlor Cacodylic Acid	MACHETE RAD-E-CATE 25 PHYTAR 560 BOLLS-EYE	Monsanto Vineland Crystal Chemical Crystal Chemical
CDAA	RANDOX	Monsanto
Chloroxuron	TENORAN SÖW	Ciba-Geigy
Chlorsulfuron	"Glean" Weed Killer	Dupont
Cyanazine	BLADEX 80 WP BLADEX 4-WDS BLADEX 15G	Shell Shell Shell
2,4-D a) 2,4-D Amine	WEEDAR 64 RHODIA 2,4-D Amine No.4 DMA-4 FORMULA 40 AMINE 4D AMINE 6D WEED-RHAP A-4D	Union Carbide Rhone-Poulenc Dow Dow Diamond Shamrock Diamond Shamrock Vertac

-

A-3

.

Appendix A (continued)

WEED-RHAP A-6D WEED-OUT AMINE DECAMINE EMULSAMINE WEEDONE LV-4 WEEDONE 638	Vertac Farmland Diamond Shamrock Union Carbide
EMULSAMINE WEEDONE LV-4	Union Carbide
(2, 4-D acid + 2, 4-D)	Union Carbide Union Carbide
butoxyethyl ester) RHODIA 2,4-D Low Volatile Ester	Rhone-Poulenc
(L.V.E.)4L ESTERON 99 concentrate ESTERON 76 BE ESTERON 6E WEED-RHAP LV 4D WEED-RHAP LV 6D LO-VOL 4D LO-VOL 6D BUTYL 4D BUTYL 6D WEED-OUT 4-L.V.E. WEED-OUT 6-L.V.E.	Vertac Vertac Vertac Vertac Diamond Shamrock Diamond Shamrock Diamond Shamrock Diamond Shamrock Farmland Farmland
BUTOXONE BUTOXONE Ester BUTYRAC 118 BUTYRAC 175 BUTYRAC Ester LEY-CORNOX (2,4-DB, benazolin + MCPA)	Rhone-Poulenc Rhone-Poulenc Union Carbide Union Carbide Union Carbide BFC Chemicals
BANVEL BANVEL II TRI-CORNOX (dicamba, benzolin + 2,4-DP) BANVEL 720 (dicamba + 2,4-D Damine salts) ACME Brush Killer (dicamba, 2,4-D + dichlorprop)	Velsicol Velsicol BFC Chemicals Velsicol PBI/Gordon Corp.
	Low Volatile Ester (L.V.E.)4L ESTERON 99 concentrate ESTERON 76 BE ESTERON 6E WEED-RHAP LV 4D WEED-RHAP LV 6D LO-VOL 4D LO-VOL 4D BUTYL 6D WEED-OUT 4-L.V.E. WEED-OUT 6-L.V.E. BUTOXONE BUTOXONE Ester BUTYRAC 118 BUTYRAC 175 BUTYRAC 175 BUTYRAC 25ter LEY-CORNOX (2,4-DB, benazolin + MCPA) BANVEL BANVEL II TRI-CORNOX (dicamba, benzolin + 2,4-DP) BANVEL 720 (dicamba + 2,4-D Damine salts) ACME Brush Killer (dicamba, 2,4-D +

A-4

•

÷.,

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
Dicamba (cont'd)	ACME INDUSTRIAL BRUSH KILLER (dicamba, 2,4-D, Mecoprop)	P3I/Gordon Corp.
3,6-Dichloro- picolinic acid	LONTREL LONTREL 3 LONTREL 205 (3,6- Dichloropicolinic acid + 2,4-D) BENAZALOX (3,6-trichloro acid + benazoliń)	Dow Dow Dow i BFC Chemicals
Dichlorprop	WEEDONE 2,4-DP WEEDONE 170 ENVERT 171 CORNOX RK 64 CORNOX RK Extra concentrate (2,4-DP + MCPA) TRI-CORNOX Special (2,4-DP, benazolin + dicamba) Dichlorprop (Tech) Dichlorprop (Tech)	Union Carbide Union Carbide Union Carbide BFC Chemicals BFC Chemicals BFC Chemicals BFC Chemicals Dow
Diquat	Ortho Diquat REGLONE	Chevron I.C.I.
Díuron	KARMEX Weed Killer KROVAR I Weed Killer KROVAR II Weed Killer VELPAR K-4 Weed Killer DREXEL DIURON 4L	Dupont Dupont Dupont Dupont Drexel
Endothall	ENDOTHAL (Tech.) ACCELERATE (Endothall + ammonium sulfate)	Pennwal:
?enac	FENATROL FENATROL Industrial FENATROL Plus (Fenac + 2,4-D)	Union Carbide Union Carbide Union Carbide

.

Appendix A (continued)

A-5

•

.

Appendix A (continued)

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
Fenac (cont'd)	FENAVAR (Fenac, + bromacil, amitrole)	Union Carbide
	FENAVAR Granular	Union Carbide
	(fenac + bromacil)	Union Carbida
	FENAMINE (fenac, atrazine, + amitrole)	SWIDE CALDIDE
Fenuron	BEET-KLEEN	Shell Chemicals
Fenuron TCA	DOZER	Hopkins Agricultural
		Chemical Co.
Fosamine Ammonium	KRENITE	Dupont
	KRENITE S	Dupont
Glyphosate	ROUNDUP	Monsanto
	MON-0139 (for	Monsanto
	experimental purposes only)	
Hexazinone	VELPAR Weed Killer	Dupont
	VELPAR Gridball Brush Killer	Dupont
	VELPAR L Weed Killer	Dupont
	VELPAR K (hexazinone + diuron)	Dupont
Karbutilate	TANZENE	Ciba-Geigy
Rarbuttate	FMC 11092	Ciba-Geigy
	NIA 11092	Ciba-Geigy
	TANZENE 80W (karbutilate + simazine)	Ciba-Geigy
	TANDEX	Ciba-Geigy
MCPA	CHIPTOX	Rhone-Poulenc
	RHOMENE	Rhone-Poulanc
	RHONOX	Rhone-Poulenc
	Bronate (MCPA + bromoxynil)	Rhone-Poulenc
	DOW MCP Amine	DOW
	Weed Killer	
	WEEDAR Sodium MCPA	Union Carbide
	BROMINAL Plus	Union Carbide Union Carbide
	WEEDAR MCPA Concentrate	Surou carorde

2

Appendix A (continued)

~

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
MCPA (cont'd)	WEEDONE MCPA Ester MCP AMINE 4 Ley-Cornox (MCPA + Benazolin + 2,4-DB)	Union Carbide Diamond Shamrock BFC Chemicals
МСРВ	CAN-TROL THISTROL	Rhone-Poulenc Union Carbide
Месоргор	ISO-CORNOX 64 CHIPCO Turf Herbicide MCPP MCPP K-4	BFC Chemicals Rhone-Poulenc Rhone-Poulenc Diamond Shamrock
Metribuzin	SENCOR LEXONE Weed Killer LEXONE DF Weed Killer LEXONE 4L Week Killer	Mobay Chemical Corp. Dupont Dupont Dupont
Monuron TCA	UROX UROX E Weed Killer UROX Liquid Weed Killer with 2,4-D	Hopkins Hopkins Hopkins
MSMA -	ARSONATE Liquid BUENO BUENO 6 DACONATE DACONATE 6 DAL-E-RAD 70 + W DAL-E-RAD 120 MESAMATE 400 MESAMATE 400 MESAMATE 600 SUPER ARSONATE TRANS-VERT WEED-E-RAD + W WEED-HOE-108 WEED-HOE-120 WEED-HOE-120 WEED-HOE-2X BROADSIDE (MSMA + cacodylic acid) DIUMATE (MSMA + diuron) MAD (MSMA + 2,4-D)	Diamond Shamrock Diamond Shamrock Union Carbide Vineland Chemical Co. Vineland Chemical Co. Vineland Chemical Co. Vineland Chemical Co. VERTAC Chemical Co. VERTAC Chemical Co.

A-7

~

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
Nitrofen	TOK E-25 TOK WP-50	Rohm and Haas Co. Rohm and Haas Co.
Oxyfluorfen	GOAL 2EC GOAL 25-W GOAL 1G GOAL 26	Rohm and Haas Co. Rohm and Haas Co. Rohm and Haas Co. Rohm and Haas Co.
Paraquat	ORTHO PARAQUAT GRAMOXONE PATHCLEAR (Paraquat, + diquat and + simazine PARACOL (Paraquat + diuron) Terraklene (Paraquat + simazine)	Chevron Chemical Co. ICI ICI ICI ICI
Pendimethalin	PROWL STOMP HERBADOX GO-GO-SAN ACCOTAB SIPAXOL WAX UP	American Cyanamid Co. American Cyanamid Co. American Cyanamid Co. American Cyanamid Co. American Cyanamid Co. American Cyanamid Co. American Cyanamid Co.
Picloram	TORDON . TORDON 101 (Picloram + 2,4-D) TORDON RTU (Picloram + 2,4D) GRAZON AMDON 101 (Picloram + 2,4D)	Dow Chemical Co. Dow Chemical Co. Dow Chemical Co. Dow Chemical Co. Union Carbide
Prometon	PRAMITOL 25E PRAMITOL 5Ps (Prometon, + simazine, sodium chlorate, + sodium metaborate) PRAMITOL 80WP CONQUER Liquid Vegetation Killer	Ciba-Geigy Ciba-Geigy Ciba-Geigy Ciba-Geigy

Appendix A (continued)

A-3

Appendix A (continued)

COMMON NAME	PRODUCT NAME	MANUFACTURER'S NAME
Pronazide	KERB	Rohm and Haas Co.
Propanil	STAM M-4 STAMPEDE 3E VERTAC Propanil 4 VERTAC Propanil 3 PROPANEX SUPERNOX	Rohm and Haas Co. Rohm and Haas Co. Vertac Vertac Crystal Chemical Inter- America Crystal Chemical Inter- America
Simazine .	PRINCEP 80W PRINCEP 4L PRINCEP 4G TANZENE 80W (simazine + karbutilate)	Ciba-Geigy Ciba-Geigy Ciba-Geigy Ciba-Geigy
Sodium Chlorate	DEFOL SODIUM CHLORATE HARVEST AID TUMBLEAF UREABOR (sodium chlorate + sodium metaborate + bromacil) HIBOR C (sodium chlorate sodium metaborate + bromacil)	
2,3,6-TBA	BENZAC	Union Carbide
'ebuthiuron	GRASLAN SPIKE	Elanco Products Co. Elanco Products Co.
erbacil	SINBAR	Dupont
erbutryn	IGRAN 80W	Ciba-Geigy
riclopyr	GARLON 3A GARLON 4 ESTERON BK (Triclopyr + 2,4-D)	Dow Chemical Co. Dow Chemical Co. Dow Chemical Co.

Sources: WSSA 1983, Meister 1984

A-9

3

3

References

- Curry, W. 1984. Personal Communication. University of Florida. May 8, 1984.
- Dow Chemical Co. 1983. ESTERON BK. Specimen Label. The Dow Chemical Company. Midland, MI.
- Gentner, W.A. 1984. Personal Communication. USDA. March 27, 1984.
- Johnson, R.R. 1984. Personal Communication. Union Carbide Agricultural Products Co., Inc.
- Kasasian, L. 1971. Weed Control in the Tropics. Leonard Hill. London
- McGlamery, M.D. 1984. Personal Communication. University of Illinois, Agronomy Department. May 3, 1984.
- Meister, 1984. Farm Chemicals Handbook. Meister Publishing Company, Willoughby, Ohio.
- Palmer, R. 1984. Personal Communication. Texas A&M University, Cooperative Extension Service. May 3, 1984.
- SSIE (Smithsonian Science Information Exchange) Current Research. 1983. U.S. Department of Commerce. Springfield, Virginia. DIALOG Information Retrieval Service.
- Union Carbide. 1983. Weedone 2,4-DP. Woody Plant Herbicide. Specimen Label. Union Carbide Agricultural Products Company, Inc. Research Triangle Park, NC.
- U.N.N.L. (United Nations Narcotic Laboratory). 1979. Methods for the Eradication of Illicit Narcotic Crops. Report of a study group meeting in Geneva, 25-27 July 1979. U.N. document MNAR/8/1979.
- VELSICOL (Velsicol Chemical Corporation). 1981. Technical Information Banvel Herbicide and Other Dicamba Formulations. Bulletin 521-2. Chicago, Illinois.
- Worsham, D. 1984. Personal Communication. North Carolina State University. May 3, 1984.
- WSSA (Weed Science Society of America). 1983. Herbicide Handbook, fifth edition. Champaign, Illinois. Weed Science Society of America.